当前位置: 首页 > news >正文

设计网站需要用到哪些技术搞一个公司网站得多少钱

设计网站需要用到哪些技术,搞一个公司网站得多少钱,南阳市建网站公,三九集团如何进行网站建设常见的距离有曼哈顿距离、欧式距离、切比雪夫距离、闵可夫斯基距离、汉明距离、余弦距离等,用Python实现计算的方式有多种,可以直接构造公式计算,也可以利用内置线性代数函数计算,还可以利用scipy库计算。 1.曼哈顿距离 也叫城市…

常见的距离有曼哈顿距离、欧式距离、切比雪夫距离、闵可夫斯基距离、汉明距离、余弦距离等,用Python实现计算的方式有多种,可以直接构造公式计算,也可以利用内置线性代数函数计算,还可以利用scipy库计算。

1.曼哈顿距离

也叫城市街区距离,是两点差向量的L1范数,也就是各元素的绝对值之和。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的曼哈顿距离表示为
d = ∑ i = 1 n ∣ x i − y i ∣ d=\sum_{i=1}^{n}{\left| x_i-y_i \right|} d=i=1nxiyi

Python实现:

import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.sum(np.abs(A-B))# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=1)  #ord为范数类型,取值1(一范数),2(二范数),np.inf(无穷范数),默认2。# 方式三:scipy库计算
dist3 = distance.cityblock(A,B)

2.欧式距离

是一种最常见的距离,也就是两点差向量的L2范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的欧式距离表示为
d = ∑ i = 1 n ( x i − y i ) 2 d=\sqrt{\sum_{i=1}^{n}{\left( x_i-y_i \right)^{2}}} d=i=1n(xiyi)2

Python实现:

import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.sqrt(np.sum((A-B)**2))# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=2)# 方式三:scipy库计算
dist3 = distance.euclidean(A,B)

3.切比雪夫距离

最大的维度内距离,是两点差向量的无穷范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的切比雪夫距离表示为
d = m a x ( ∣ x i − y i ∣ ) d=max\left( \left| x_i-y_i \right| \right) d=max(xiyi)
Python实现:

import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.max(np.abs(A-B))# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=np.inf)# 方式三:scipy库计算
dist3 = distance.chebyshev(A,B)

4. 闵可夫斯基距离

是一种范式距离的统称,可表示为两点差向量的Lp范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的闵可夫斯基距离表示为
d = ∑ i = 1 n ∣ x i − y i ∣ p p d=\sqrt[p]{\sum_{i=1}^{n}{\left| x_i-y_i \right|^{p}}} d=pi=1nxiyip
Python实现:

import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:内置线性代数函数计算
dist1 = np.linalg.norm(A-B,ord=3)  # np.linalg.norm(A-B,ord=p)# 方式二:scipy库计算
dist2 = distance.minkowski(A,B,3)  # distance.minkowski(A,B,p)

5.汉明距离

衡量两个字符串之间的差异程度,对两个对象的向量元素逐个比较,差异的个数占总个数的比例。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的汉明距离表示为
d = 1 n ∑ i = 1 n I ( x i ≠ y i ) d=\frac{1}{n}\sum_{i=1}^{n}{I\left( x_i\ne y_i \right)} d=n1i=1nI(xi=yi)
其中I为指示函数,
I = { 1 i f ( x i ≠ y i ) 0 i f ( x i = y i ) \begin{equation} I= \left\{ \begin{array}{lr} 1 \quad if\left( x_i\ne y_i \right)&\\ 0 \quad if\left( x_i = y_i\right) \end{array} \right. \end{equation} I={1if(xi=yi)0if(xi=yi)
Python实现:

import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:scipy库计算
dist1 = distance.hamming(A,B)

6.余弦距离

也叫余弦相似度,是两点空间向量夹角的余弦值,是内积与模积的比值,用来衡量两向量间的差异程度。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的余弦距离表示为
d = c o s θ = < A , B > ∣ A ∣ ⋅ ∣ B ∣ = ∑ i = 1 n x i y i ∑ i = 1 n x i 2 ⋅ ∑ i = 1 n y i 2 \begin{align} d&=cos\theta=\frac{<A,B>}{\left| A \right|\cdot\left| B \right|} \\ &=\frac{\sum_{i=1}^{n}{x_iy_i}}{\sqrt{\sum_{i=1}^{n}{x_i^{2}}}\cdot\sqrt{\sum_{i=1}^{n}{y_i^{2}}}} \end{align} d=cosθ=AB<A,B>=i=1nxi2 i=1nyi2 i=1nxiyi
Python实现:

import numpy as np
from scipy.spatial import distanceA = np.array([1,2,3])
B = np.array([4,5,6])# 方式一:直接构造公式计算
dist1 = np.sum(A*B)/(np.sqrt(np.sum(A**2))*np.sqrt(np.sum(B**2)))# 方式二:scipy库计算
dist2 = 1-distance.cosine(A,B)

End.


参考:
https://blog.csdn.net/lemonbit/article/details/129053257

http://www.ds6.com.cn/news/13821.html

相关文章:

  • 怎么样做国外推广网站营销推广投放平台
  • 昆明做网站设计优化一下
  • 商城网站免费模板域名批量注册查询
  • 海洋专业做网站正规seo排名公司
  • 自己的电脑做服务器建立网站的方法百度关键字排名软件
  • 无法打开服务器上的网站可以推广的平台
  • 石家庄网站开发设计怎么自己做网站
  • 网上做设计兼职哪个网站好点seo搜索引擎优化实战
  • 英文公司网站营销战略包括哪些方面
  • 手机软件网站潍坊seo计费
  • 徽与章网站建设宗旨搜索引擎排名谷歌
  • ai怎么做网站用海报各种网站
  • 海南明确2023年封岛seo推广一年要多少钱
  • 网站移动端怎么做企业网址怎么申请
  • 静态网页模板免费长沙seo招聘
  • 免费建网站骗局网络推广应该怎么做啊
  • 海口网站建设推广亚马逊查关键词排名工具
  • 宁波甬晟园林建设有限公司网站网址收录入口
  • 大连市公众平台网站哪个平台可以接推广任务
  • 手机模板网站网络营销总结
  • 淘宝客网站推广位怎么做哈尔滨关键词优化方式
  • 铜陵做网站的个人网页设计作品模板
  • wordpress会员查看内容收费做网站建设优化的公司排名
  • 学做网站看那个网平台推广策略都有哪些
  • 谷歌网站推广软件域名年龄对seo的影响
  • 天津网站建设软件开发招聘网页设计与制作代码成品
  • 网站开发 成都去了外包简历就毁了吗
  • 广西壮族自治区有几个市站长工具seo综合查询工具
  • 做网站难学吗免费ip地址网站
  • jsp网站开发环境竞价培训课程