当前位置: 首页 > news >正文

英文公司网站营销战略包括哪些方面

英文公司网站,营销战略包括哪些方面,黄石本地做网站的,wordpress引用jquery文章目录 一. 数据集介绍Iris plants dataset 二. 代码三. k值的选择 一. 数据集介绍 鸢尾花数据集 鸢尾花Iris Dataset数据集是机器学习领域经典数据集,鸢尾花数据集包含了150条鸢尾花信息,每50条取自三个鸢尾花中之一:Versicolour、Setosa…

文章目录

  • 一. 数据集介绍
    • Iris plants dataset
  • 二. 代码
  • 三. k值的选择

一. 数据集介绍

鸢尾花数据集
鸢尾花Iris Dataset数据集是机器学习领域经典数据集,鸢尾花数据集包含了150条鸢尾花信息,每50条取自三个鸢尾花中之一:Versicolour、Setosa和Virginica
在这里插入图片描述
每个花的特征用如下属性描述:
在这里插入图片描述

from sklearn.datasets import load_iris
# 1. 准备数据集
iris = load_iris()
iris.data

在这里插入图片描述

iris.target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
print(iris.DESCR)

Iris plants dataset

Data Set Characteristics:

:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:- sepal length in cm- sepal width in cm- petal length in cm- petal width in cm- class:- Iris-Setosa- Iris-Versicolour- Iris-Virginica:Summary Statistics:============== ==== ==== ======= ===== ====================Min  Max   Mean    SD   Class Correlation
============== ==== ==== ======= ===== ====================
sepal length:   4.3  7.9   5.84   0.83    0.7826
sepal width:    2.0  4.4   3.05   0.43   -0.4194
petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)
petal width:    0.1  2.5   1.20   0.76    0.9565  (high!)
============== ==== ==== ======= ===== ====================:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988

二. 代码

from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifierif __name__ == '__main__':# 1. 加载数据集  iris = load_iris() #通过iris.data 获取数据集中的特征值  iris.target获取目标值# 2. 数据标准化transformer = StandardScaler()x_ = transformer.fit_transform(iris.data) # iris.data 数据的特征值# 3. 模型训练estimator = KNeighborsClassifier(n_neighbors=3) # n_neighbors 邻居的数量,也就是Knn中的K值estimator.fit(x_, iris.target) # 调用fit方法 传入特征和目标进行模型训练# 4. 利用模型预测result = estimator.predict(x_) print(result)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

三. k值的选择

KNN算法的关键是,是K值的选择,下图中K=3,属于红色三角形,K=5属于蓝色的正方形。这个时候就是K选择困难的时候。
在这里插入图片描述
KNN 算法中K值过大、过小都不好, 一般会取一个较小的值
采用交叉验证法(把训练数据再分成:训练集和验证集)来选择最优的K值。

#加载数据集
x,y = load_iris(return_X_y=True)
#数据标准化
scaler = StandardScaler()
x_scaled = scaler.fit_transform(x)
#划分数据集
x_train,x_test,y_train,y_test = train_test_split(x_scaled,y,test_size=0.2,random_state=0)
#创建网络搜索对象
knn = KNeighborsClassifier()
param_grid = {'n_neighbors':[1, 3, 5, 7]}
estimator = GridSearchCV(knn, param_grid, cv=5)
#训练模型
estimator.fit(x_train,y_train)
#输出最优参数
#打印最优参数(验证集)
print('最优参数组合:', estimator.best_params_, '最好得分:', estimator.best_score_)#测试集评估模型(测试集)
print('测试集准确率:', estimator.score(x_test, y_test))
最优参数组合: {'n_neighbors': 7} 最好得分: 0.9416666666666667
测试集准确率: 1.0
http://www.ds6.com.cn/news/13811.html

相关文章:

  • 手机软件网站潍坊seo计费
  • 徽与章网站建设宗旨搜索引擎排名谷歌
  • ai怎么做网站用海报各种网站
  • 海南明确2023年封岛seo推广一年要多少钱
  • 网站移动端怎么做企业网址怎么申请
  • 静态网页模板免费长沙seo招聘
  • 免费建网站骗局网络推广应该怎么做啊
  • 海口网站建设推广亚马逊查关键词排名工具
  • 宁波甬晟园林建设有限公司网站网址收录入口
  • 大连市公众平台网站哪个平台可以接推广任务
  • 手机模板网站网络营销总结
  • 淘宝客网站推广位怎么做哈尔滨关键词优化方式
  • 铜陵做网站的个人网页设计作品模板
  • wordpress会员查看内容收费做网站建设优化的公司排名
  • 学做网站看那个网平台推广策略都有哪些
  • 谷歌网站推广软件域名年龄对seo的影响
  • 天津网站建设软件开发招聘网页设计与制作代码成品
  • 网站开发 成都去了外包简历就毁了吗
  • 广西壮族自治区有几个市站长工具seo综合查询工具
  • 做网站难学吗免费ip地址网站
  • jsp网站开发环境竞价培训课程
  • 公司做网站一般用什么域名seo项目分析
  • 邯郸制作网站深圳网站建设运营
  • 微网站下载资料怎么做山东最新消息今天
  • asp.net 网站开发 教程seo网络优化专员是什么意思
  • 爱站网关键字查询广州seo搜索
  • 做网站与网页有什么区别泰州seo公司
  • 仿牌做外贸建网站百度的广告
  • 一般网站开发的硬件要求长沙百度推广开户
  • 电子商务网站的规划与分析最新清远发布