当前位置: 首页 > news >正文

沈阳市铁西区建设局网站苏州网站建设书生

沈阳市铁西区建设局网站,苏州网站建设书生,一家专门做开网店的网站,创意设计作品欣赏583. 两个字符串的删除操作 动规五部曲 1、确定dp数组(dp table)以及下标的含义 dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。 2、确定递推…

583. 两个字符串的删除操作

动规五部曲

1、确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

2、确定递推公式

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么在删 word1[i - 1],就达到了两个元素都删除的效果,即 dp[i][j-1] + 1

3、dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

4、确定遍历顺序

从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

5、举例推导dp数组

以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];} else {dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);}}}return dp[word1.size()][word2.size()];}
};

思路二

只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return word1.size() + word2.size() - dp[word1.size()][word2.size()] * 2;}
};

72. 编辑距离

动规五部曲

1、确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

2、确定递推公式

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

if (word1[i - 1] == word2[j - 1])不操作
if (word1[i - 1] != word2[j - 1])增删换

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

if (word1[i - 1] != word2[j - 1])

  • 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。

dp[i][j] = dp[i - 1][j] + 1;

  • 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。

dp[i][j] = dp[i][j - 1] + 1;

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd'word2添加一个元素'd',变成word1="a", word2="ad"

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

3、dp数组如何初始化

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

4、确定遍历顺序

从如下四个递推公式:

  • dp[i][j] = dp[i - 1][j - 1]
  • dp[i][j] = dp[i - 1][j - 1] + 1
  • dp[i][j] = dp[i][j - 1] + 1
  • dp[i][j] = dp[i - 1][j] + 1

可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:

所以在dp矩阵中一定是从左到右从上到下去遍历。

 5、举例推导dp数组

以示例1为例,输入:word1 = "horse", word2 = "ros"为例,dp矩阵状态图如下:

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];} else {dp[i][j] = min(dp[i - 1][j], min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;}}}return dp[word1.size()][word2.size()];}
};

 

编辑距离总结

编辑距离从判断子序列->判断子序列 ->不同的子序列 ->两个字符串的删除操作->编辑距离

以上四个题都是从最初子序列开始,在原本一个子序列的基础上,变成了二维,通过观察每次解题代码可以发现,其实各题在解题思路上都几乎类似,难点在于递推公式的推导与初始化,递推公式的推导要在理解各题要求的同时,思考该如何得出当前状态,时刻谨记dp数组的定义有利于递推公式推导

http://www.ds6.com.cn/news/9822.html

相关文章:

  • 常州公司建站模板做高端网站公司
  • 网站建设难做吗推推蛙seo顾问
  • 关于做网站的书长安seo排名优化培训
  • 已有网站备案更换idc 多久网站提交百度收录
  • 上海专业做网站公司报价b站视频推广网站动漫
  • 台州铭企做的网站企业类网站有哪些例子
  • 做网站搭建的公司seo软件服务
  • wordpress skype 插件福建seo优化
  • 购物网站开发教程seo每日一贴
  • 佛山市城乡和住房建设局网站合肥seo推广外包
  • wordpress获取用户位置大连谷歌seo
  • 蓝色旅游网站模板百度云下载
  • 动易网站开发优化关键词的方法正确的是
  • 重庆做网站哪个好些嘛上海网络关键词优化
  • 郑州定制网站推广工具网站关键词公司
  • 静宁网站建设产品推广平台
  • 家装网站做淘宝推广平台
  • 做网站的广告语百度助手安卓版下载
  • 大连做网站公司疫情二十条优化措施
  • 音乐网站的音乐列表如何做站长工具seo推广秒收录
  • 做企业网站后期还需要费用吗seo代码优化有哪些方法
  • 模板做图 网站google引擎入口
  • 做国际贸易用什么网站引流推广网站
  • 网络整合营销4i原则百度seo排名点击
  • 网站建设合同注意事项越秀seo搜索引擎优化
  • 新浪云wordpress教程关键词优化排名软件流量词
  • 客服外包怎么找甲方智能优化网站
  • 贵阳双龙区建设局网站nba常规赛
  • 小型购物网站模板外贸独立站怎么做
  • 全国物流货运平台夫唯seo教程