当前位置: 首页 > news >正文

北京网站托管谷歌网站推广

北京网站托管,谷歌网站推广,app游戏开发公司哪家好,高级搜索百度目标:掌握 SQL 中分析函数(窗口函数)与聚合函数的组合使用,通过实际案例实现复杂业务需求,如同比、环比和趋势分析。 1. 分析函数与聚合函数的区别 聚合函数(Aggregate Functions):…

目标:掌握 SQL 中分析函数(窗口函数)与聚合函数的组合使用,通过实际案例实现复杂业务需求,如同比、环比和趋势分析。


1. 分析函数与聚合函数的区别

  • 聚合函数(Aggregate Functions):对多行数据进行汇总,返回一个结果。常见的有 SUMAVGCOUNTMAX 等。
  • 分析函数(Analytic/Window Functions):在不缩减行数的前提下,基于某个窗口执行计算。常见的有 SUM() OVERRANK()LEAD()LAG() 等。

2. 核心函数介绍

  • SUM() OVER:在特定窗口内累加数据,返回每一行对应窗口的累积值。
  • AVG() OVER:在窗口内计算平均值,常用于移动平均。
  • PERCENT_RANK():计算当前行在窗口内的百分比排名。

3. 案例:计算用户每月销售额及同比、环比增长率

需求描述
  1. 计算每个用户在每个月的总销售额。
  2. 计算每个月的环比增长率(本月与上月相比)。
  3. 计算每个月的同比增长率(本月与去年同月相比)。

示例数据

sales 表结构:

sale_iduser_idsale_amountsale_date
11015002023-01-15
21016002023-02-10
31017002024-01-20
41024002023-01-18
51024502024-01-25

SQL 实现
WITH monthly_sales AS (SELECT user_id,DATE_FORMAT(sale_date, '%Y-%m') AS sale_month,SUM(sale_amount) AS total_salesFROM salesGROUP BY user_id, DATE_FORMAT(sale_date, '%Y-%m')
),
sales_with_trends AS (SELECT user_id,sale_month,total_sales,LAG(total_sales, 1) OVER (PARTITION BY user_id ORDER BY sale_month) AS previous_month_sales,LAG(total_sales, 12) OVER (PARTITION BY user_id ORDER BY sale_month) AS last_year_salesFROM monthly_sales
)
SELECT user_id,sale_month,total_sales,ROUND((total_sales - previous_month_sales) / NULLIF(previous_month_sales, 0) * 100, 2) AS month_over_month_growth,ROUND((total_sales - last_year_sales) / NULLIF(last_year_sales, 0) * 100, 2) AS year_over_year_growth
FROM sales_with_trends
ORDER BY user_id, sale_month;

代码解析

  1. 第一步monthly_sales):按用户和月份汇总销售数据,计算每月销售总额。
  2. 第二步sales_with_trends):
    • 使用 LAG() 计算前一个月的销售额,计算环比。
    • 使用 LAG() 结合 12 个月偏移量计算去年的同月销售额,实现同比。
  3. 最终结果:计算环比、同比增长率,NULLIF 防止除零错误。

结果示例

user_idsale_monthtotal_salesmonth_over_month_growthyear_over_year_growth
1012023-01500NULLNULL
1012023-0260020.00NULL
1012024-0170016.6740.00

4. 亮点解读

  • 环比计算:通过 LAG() 直接获取上个月数据,无需自联表。
  • 同比计算:利用 LAG() 向前偏移12个月,直观且高效。
  • 窗口函数优势:保留所有行数据,且在不改变原始行的基础上计算额外指标。

5. 扩展思考

  • 可以使用 LEAD() 预测未来趋势或计算未来一个月的数据变化。
  • 结合 PERCENT_RANK() 分析各用户在销售额中的排名,实现销售精英筛选。
  • 使用 NTILE(4) 将用户按季度或销售额分组,分析不同等级用户的增长趋势。

这种 SQL 方案适合在业务系统中监控用户销售趋势,适用于电商、金融和 SaaS 产品的业务数据分析。

http://www.ds6.com.cn/news/52966.html

相关文章:

  • 惠州网站网站建设网络推广方案怎么写
  • 域名卖给别人有风险吗什么软件可以优化关键词
  • 网站不备案可以做百度竞价吗谷歌paypal官网下载
  • 湟源县wap网站建设公司好网站制作公司
  • 石家庄外贸网站建设互联网广告推广
  • 商务网站建设百度一下百度首页官网
  • 杭州倍世康 做网站杭州网站优化
  • 昭通网站建设公司营销策划方案案例
  • wordpress 近期文章seo公司多少钱
  • 西安网站seo方法百度软件商店下载安装
  • 国家军事新闻头条seo研究中心学员案例
  • 界面十分好看的网站信息流广告优秀案例
  • 专业手机网站制作哪家好黑马培训
  • 门户网站建设技术要求seo的名词解释
  • 做断桥铝窗户的网站搜索引擎优化的名词解释
  • 朝阳网站建设网站建设企业咨询
  • 找不同 网站开发识万物扫一扫
  • 揭阳 网站建设微信怎么引流营销呢
  • 优定软件网站建设奶茶软文案例300字
  • 做机电证的网站百度投诉中心在线申诉
  • 怎样做农村电商网站宁波网络营销有哪些
  • 免费视频网站制作重庆关键词快速排名
  • 软件开发工具分类seo兼职论坛
  • 山东中迅网站建设竞价排名机制
  • 公众号如何做微网站湖南关键词优化推荐
  • 做网站单页烧钱竞价sem培训
  • 做淘宝客要有网站吗爱站工具包下载
  • 石河子市建设局网站全国疫情今天最新消息
  • 网站如何做百度实名认证口碑营销名词解释
  • 重庆做汉堡的餐饮公司网站重庆seo推广运营