当前位置: 首页 > news >正文

cms网站是什么意思网络营销心得体会300字

cms网站是什么意思,网络营销心得体会300字,怎样做交友网站,什么是wordpress网站分类目录:《自然语言处理从入门到应用》总目录 聊天模型是语言模型的一种变体。虽然聊天模型在内部使用语言模型,但它们公开的接口略有不同。它们不是提供一个“输入文本,输出文本”的API,而是提供一个以“聊天消息”作为输入和输…

分类目录:《自然语言处理从入门到应用》总目录


聊天模型是语言模型的一种变体。虽然聊天模型在内部使用语言模型,但它们公开的接口略有不同。它们不是提供一个“输入文本,输出文本”的API,而是提供一个以“聊天消息”作为输入和输出的接口。 聊天模型的API还比较新,因此我们仍在确定正确的抽象层次。本问将介绍如何开始使用聊天模型,该接口是基于消息而不是原始文本构建的:

from langchain.chat_models import ChatOpenAI
from langchain import PromptTemplate, LLMChain
from langchain.prompts.chat import (ChatPromptTemplate,SystemMessagePromptTemplate,AIMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.schema import (AIMessage,HumanMessage,SystemMessage
)
chat = ChatOpenAI(temperature=0)

通过向聊天模型传递一个或多个消息,可以获取聊天完成的结果。响应将是一个消息。LangChain目前支持的消息类型有AIMessageHumanMessageSystemMessageChatMessage,其中ChatMessage接受一个任意的角色参数。大多数情况下,我们只需要处理HumanMessageAIMessageSystemMessage

chat([HumanMessage(content="Translate this sentence from English to French. I love programming.")])

输出:

AIMessage(content="J'aime programmer.", additional_kwargs={})

OpenAI的聊天模型支持多个消息作为输入。更多信息请参见这里。以下是向聊天模型发送系统消息和用户消息的示例:

messages = [SystemMessage(content="You are a helpful assistant that translates English to French."),HumanMessage(content="I love programming.")
]
chat(messages)

输出:

AIMessage(content="J'aime programmer.", additional_kwargs={})

您还可以进一步生成多组消息的完成结果,使用generate方法实现。该方法将返回一个带有额外message参数的LLMResult

batch_messages = [[SystemMessage(content="You are a helpful assistant that translates English to French."),HumanMessage(content="I love programming.")],[SystemMessage(content="You are a helpful assistant that translates English to French."),HumanMessage(content="I love artificial intelligence.")],
]
result = chat.generate(batch_messages)
result

输出:

LLMResult(generations=[[ChatGeneration(text="J'aime programmer.", generation_info=None, message=AIMessage(content="J'aime programmer.", additional_kwargs={}))], [ChatGeneration(text="J'aime l'intelligence artificielle.", generation_info=None, message=AIMessage(content="J'aime l'intelligence artificielle.", additional_kwargs={}))]], llm_output={'token_usage': {'prompt_tokens': 57, 'completion_tokens': 20, 'total_tokens': 77}})

我们可以从LLMResult中获取诸如标记使用情况之类的信息:

result.llm_output

输出:

{'token_usage': {'prompt_tokens': 57,'completion_tokens': 20,'total_tokens': 77}}

PromptTemplates

我们可以使用模板来构建MessagePromptTemplate。我们可以从一个或多个MessagePromptTemplate构建一个ChatPromptTemplate。我们还可以使用ChatPromptTemplateformat_prompt方法,它将返回一个PromptValue,我们可以将其转换为字符串或消息对象,具体取决于我们是否希望将格式化后的值作为输入传递给LLM或Chat模型的输入。为了方便起见,模板上公开了一个from_template方法。如果您要使用此模板,代码如下所示:

template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])# 获取格式化后的消息的聊天完成结果
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())

输出:

AIMessage(content="J'adore la programmation.", additional_kwargs={})

如果我们想直接更直接地构建MessagePromptTemplate,我们可以在外部创建一个PromptTemplate,然后将其传递进去,例如:

prompt=PromptTemplate(template="You are a helpful assistant that translates {input_language} to {output_language}.",input_variables=["input_language", "output_language"],
)
system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)

LLMChain

我们可以以与以前非常相似的方式使用现有的LLMChain,即提供一个提示和一个模型:

chain = LLMChain(llm=chat, prompt=chat_prompt)
chain.run(input_language="English", output_language="French", text="I love programming.")

输出:

"J'adore la programmation."

Streaming

通过回调处理,ChatOpenAI支持流式处理。

from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = chat([HumanMessage(content="Write me a song about sparkling water.")])

输出:

Verse 1:
Bubbles rising to the top
A refreshing drink that never stops
Clear and crisp, it's pure delight
A taste that's sure to exciteChorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibeVerse 2:
No sugar, no calories, just pure bliss
A drink that's hard to resist
It's the perfect way to quench my thirst
A drink that always comes firstChorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibeBridge:
From the mountains to the sea
Sparkling water, you're the key
To a healthy life, a happy soul
A drink that makes me feel wholeChorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibeOutro:
Sparkling water, you're the one
A drink that's always so much fun
I'll never let you go, my friend
Sparkling

参考文献:
[1] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[2] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

http://www.ds6.com.cn/news/52138.html

相关文章:

  • 网络推广网站河南云南seo公司
  • 电商平台诈骗怎么解决seo技术自学
  • 长沙哪里学网站建设华与华营销策划公司
  • 北京做网站设计招聘app001推广平台官网
  • 响应式自适应网站模板磁力兔子搜索引擎
  • 建设公司名字智谋网站优化公司
  • 网站建设工作具体内容360排名检测
  • 兴力网站建设行业关键词
  • 南阳网站搭建如何做网络推广
  • 向国外卖货的电商平台成都seo优化外包公司
  • iis网站服务器 建立出现问题汕头网站建设开发
  • 山西太原今天重大新闻seo广告优化多少钱
  • 武汉便宜的做网站公司怎么快速推广app
  • 江西网站开发联系方式网上推广企业
  • 唐山网站搭建建个网站需要多少钱?
  • 孝感城乡建设委员会网站百度推广开户代理商
  • 网站建设需要什么人员企业广告宣传
  • 网站建设广告背景图广告联盟接单平台
  • 百度网站推广找谁做微信搜索seo优化
  • 中山蓝图科技网站建设百度推销广告一年多少钱
  • 寿光网站建设多少钱seo关键字排名
  • 日木女人做爰视频网站友情链接网站
  • 自己做网站要买域名吗seo工具查询
  • 成都装修公司招聘信息seo综合检测
  • 雄安网站建设公司免费的网站域名查询
  • wordpress多站点模式今日nba数据帝
  • 百度推广投诉电话西安网站建设推广优化
  • 定制网站建设制作商出售友情链接是什么意思
  • 公司设计网站定制网络黄页推广软件哪个好用
  • 网站里+动效是用什么做的上海谷歌seo推广公司