当前位置: 首页 > news >正文

saas 平台架构做网站网站的设计流程

saas 平台架构做网站,网站的设计流程,建站一条龙设计制作,遂宁模板建站公司timm(Torch Image Models)是一个在PyTorch上构建的图像模型库,它提供了一系列预训练的深度学习模型,使得研究人员和开发者可以方便地进行图像分类、目标检测等任务。 使用timm库创建模型时,如何确定模型的名字 使用…

timm(Torch Image Models)是一个在PyTorch上构建的图像模型库,它提供了一系列预训练的深度学习模型,使得研究人员和开发者可以方便地进行图像分类、目标检测等任务。
在这里插入图片描述

使用timm库创建模型时,如何确定模型的名字

使用timm.list_models方法,找到timm支持的模型

import timmif __name__ == '__main__':all_pretrained_models_available = timm.list_models(pretrained=True)print(all_pretrained_models_available)for i in all_pretrained_models_available:print(i)

运行结果:
很多,这里只列出一部分啊!

resnet152
resnet152d
resnet200d
resnetblur50
resnetrs50
resnetrs101
resnetrs152
resnetrs200
resnetrs270
resnetrs350
resnetrs420
resnetv2_50
resnetv2_50x1_bit_distilled
resnetv2_50x1_bitm
resnetv2_50x1_bitm_in21k
resnetv2_50x3_bitm
resnetv2_50x3_bitm_in21k
resnetv2_101
resnetv2_101x1_bitm
resnetv2_101x1_bitm_in21k
resnetv2_101x3_bitm
resnetv2_101x3_bitm_in21k
resnetv2_152x2_bit_teacher
resnetv2_152x2_bit_teacher_384
resnetv2_152x2_bitm
resnetv2_152x2_bitm_in21k
resnetv2_152x4_bitm
resnetv2_152x4_bitm_in21k
resnext26ts

创建模型

执行代码

self.model = timm.create_model('resnetv2_50', pretrained, num_classes=12, global_pool="avg")

加载预训练权重

timm模型加载预训练权重,均改为从huggingface自动下载。由于众所周知的原因,我们不能下载。我们可以选择加载其他版本的预训练权重。代码:

model_path = '/Users/admin/Downloads/pytorch_model.bin'  # 替换为你的pytorch_model.bin文件路径# 加载模型权重
state_dict = torch.load(model_path, map_location=torch.device('cpu'))# 创建模型实例并加载权重
model = timm.create_model("eva_giant_patch14_336.clip_ft_in1k", pretrained=False)
model.load_state_dict(state_dict)# 修改输出类别数
model.reset_classifier(num_classes)  

特征提取

使用timm库进行特征提取是一个常见的任务,尤其是在处理图像数据时。timm(Torch Image Models)是一个基于PyTorch的库,它包含了一系列预训练的深度学习模型,这些模型可以很方便地用于特征提取、迁移学习等任务。

以下是一个使用timm进行特征提取的基本示例:

首先,确保你已经安装了timm库:

pip install timm

然后,你可以使用以下Python代码进行特征提取:

import torch
from timm import create_model, list_models
from torchvision import transforms
from PIL import Image# 选择一个预训练模型
model_name = 'resnet50'
pretrained_model = create_model(model_name, pretrained=True)# 切换到评估模式,关闭dropout和batch normalization层
pretrained_model.eval()# 定义预处理变换
transform = transforms.Compose([transforms.Resize(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])# 加载图像
image_path = 'path_to_your_image.jpg'
image = Image.open(image_path).convert('RGB')# 应用预处理变换
image_tensor = transform(image).unsqueeze(0)  # 添加batch维度# 如果有GPU,将图像和数据模型转移到GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
image_tensor = image_tensor.to(device)
pretrained_model = pretrained_model.to(device)# 提取特征
with torch.no_grad():  # 不需要计算梯度,节省内存和计算资源features = pretrained_model.forward_features(image_tensor)  # 获取特征# 将特征转移到CPU(如果需要)并展平
features = features.cpu().numpy().flatten()print(features)

在这个例子中,我们首先创建了一个预训练的ResNet-50模型。然后,我们将模型设置为评估模式,并定义了一个预处理变换,该变换将图像缩放到256x256,中心裁剪到224x224,转换为张量,并应用归一化。

接下来,我们加载了一张图像,并应用预处理变换。然后,我们检查是否有可用的GPU,并将图像张量和模型转移到相应的设备上。

最后,我们使用forward_features方法(这是timm库特有的,用于直接获取模型的卷积层输出,而不包括全连接层)来提取图像的特征。提取的特征被转移到CPU上,并展平为一个一维数组。

注意:不同的模型可能有不同的方法来获取特征。例如,一些模型可能没有forward_features方法,而是需要你手动选择特定的层来获取特征。在这种情况下,你需要查阅该模型的文档或源代码来了解如何正确提取特征。

http://www.ds6.com.cn/news/51603.html

相关文章:

  • 手机网站源码 html5抖音seo推广外包公司好做吗
  • 网站排行怎么做新站如何快速收录
  • 做网站什么框架比较好广告优化师发展前景
  • 狗和女人做的网站百度推广登录入口官网网
  • 网站栏目推介怎么做市场调研模板
  • 网站建设计入什么会计科目营销比较成功的品牌
  • python 视频播放网站开发太原网站建设优化
  • 建站外贸企业官网推广发布新闻
  • 做吃的网站廊坊百度推广seo
  • 网站做移动适配以后可以取消吗营销策划的十个步骤
  • 如何说服客户做网站建立网站的详细步骤
  • 合肥做网站哪家公司好经典网络营销案例
  • 做网站什么好广州竞价托管
  • 做网盟的网站必须备案软文推广做得比较好的推广平台
  • 做营销型网站的公司独立站seo是什么意思
  • css网站背景模糊一般网络推广应该怎么做
  • 网站首页 动画案例福建百度推广开户
  • 郑州加盟网站建设营销型网站建设托管
  • 手机价格网站建设太原百度快照优化排名
  • 网站修改域名服务器正规seo排名外包
  • 简历模板大学生seo搜索引擎优化推广
  • 个人做视频网站注册网站需要多少钱?
  • 网络培训心得体会1000字seo推广专员招聘
  • 专业网站设计有限公司网络营销软件网站
  • 意识形态 网站建设存在的问题网上教育培训机构
  • 如何在网站插入百度地图seo销售代表招聘
  • 深圳做网站那里好外链工厂 外链
  • 广州网站建设怎样做长沙网络营销哪家平台专业
  • 有做喜糖的网站吗cms网站
  • 现在还可以做夺宝网站seo推广视频隐迅推专业