当前位置: 首页 > news >正文

网站开发计划书范文大量微信群推广代发广告

网站开发计划书范文,大量微信群推广代发广告,重庆一家和兴装饰设计有限公司,网站建设材料统计固定时间内两条流数据的匹配情况,需要自定义来实现——可以用窗口(window)来表示。为了更方便地实现基于时间的合流操作,Flink 的 DataStrema API 提供了内置的 join 算子。 窗口联结(Window Join) 一…

统计固定时间内两条流数据的匹配情况,需要自定义来实现——可以用窗口(window)来表示。为了更方便地实现基于时间的合流操作,Flink 的 DataStrema API 提供了内置的 join 算子。

窗口联结(Window Join)

一段时间的双流合并

定义时间窗口,并将两条流中共享一个公共键(key)的数据放在窗口中进行配对处理。

stream1.join(stream2).where(<KeySelector>) // stream1 的 keyBy.equalTo(<KeySelector>) // stream2 的 keyBy.window(<WindowAssigner>).apply(<JoinFunction>)
public class WindowJoinDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);SingleOutputStreamOperator<Tuple2<String, Integer>> ds1 = env.fromElements(Tuple2.of("a", 1),Tuple2.of("a", 2),Tuple2.of("b", 3),Tuple2.of("c", 4)).assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple2<String,Integer>>forMonotonousTimestamps().withTimestampAssigner((value, ts) -> value.f1 * 1000L));SingleOutputStreamOperator<Tuple3<String, Integer, Integer>> ds2 = env.fromElements(Tuple3.of("a", 1, 1),Tuple3.of("a", 11, 1),Tuple3.of("b", 2, 1),Tuple3.of("b", 12, 1),Tuple3.of("c", 14, 1),Tuple3.of("d", 15, 1)).assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple3<String,Integer, Integer>>forMonotonousTimestamps().withTimestampAssigner((value, ts) -> value.f1 * 1000L));DataStream<String> join = ds1.join(ds2).where(r1 -> r1.f0) // ds1 的keyby.equalTo(r2 -> r2.f0) // ds2 的keyby.window(TumblingEventTimeWindows.of(Time.seconds(10))).apply(new JoinFunction<Tuple2<String, Integer>, Tuple3<String, Integer, Integer>, String>() {/*** 关联上的数据,调用 join 方法* @param first ds1 的数据* @param second ds2 的数据*/@Overridepublic String join(Tuple2<String, Integer> first, Tuple3<String, Integer, Integer> second) throws Exception {return first + "<----->" + second;}});join.print();env.execute();}
}

输出:

image-20231112153403293

window join:

  1. 两条流落在同一个时间窗口范围内才能匹配
  2. 根据 keyBy 的 key,来进行匹配关联
  3. 只能拿到匹配上的数据,类似有固定时间范围的inner join

间隔联结(Interval Join)

存在如下场景:两条流匹配的两个数据有可能刚好“卡在”窗口边缘两侧,窗口内就都没有匹配了,可以使用“间隔联结”(interval join)来解决。

原理

给定两个时间点,分别叫作间隔的“上界”(upperBound)“下界”(lowerBound);可以开辟一段时间间隔:[a.timestamp + lowerBound, a.timestamp +upperBound], 即以 a 的时间戳为中心,下至下界点、上至上界点的一个闭区间:这段时间作为可以匹配另一条流数据的“窗口”范围。

匹配的条件为:

a.timestamp + lowerBound <= b.timestamp <= a.timestamp + upperBound

image-20231112154002415

stream1
.keyBy(<KeySelector>)// KeyedStream 调用   
.intervalJoin(stream2.keyBy(<KeySelector>))
.between(Time.milliseconds(-2), Time.milliseconds(1)).process (new ProcessJoinFunction<Integer, Integer, String(){@Overridepublic void processElement(Integer left, Integer right,Context ctx, Collector<String> out){out.collect(left + "," + right);}
});

处理迟到数据,可以使用左右侧输出流

完整代码:

public class IntervalJoinWithLateDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);SingleOutputStreamOperator<Tuple2<String, Integer>> ds1 = env.socketTextStream("hadoop102", 7777).map((MapFunction<String, Tuple2<String, Integer>>) value -> {String[] datas = value.split(",");return Tuple2.of(datas[0], Integer.valueOf(datas[1]));}).assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple2<String,Integer>>forBoundedOutOfOrderness(Duration.ofSeconds(3)).withTimestampAssigner((value, ts) -> value.f1 * 1000L));SingleOutputStreamOperator<Tuple3<String, Integer, Integer>> ds2 = env.socketTextStream("hadoop102", 8888).map((MapFunction<String, Tuple3<String, Integer, Integer>>) value -> {String[] datas = value.split(",");return Tuple3.of(datas[0], Integer.valueOf(datas[1]), Integer.valueOf(datas[2]));}).assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple3<String, Integer, Integer>>forBoundedOutOfOrderness(Duration.ofSeconds(3)).withTimestampAssigner((value, ts) -> value.f1 * 1000L));/*** 【Interval join】* 1、只支持事件时间* 2、指定上界、下界的偏移,负号代表时间往前,正号代表时间往后* 3、process 中,只能处理 join 上的数据* 4、两条流关联后的 watermark,以两条流中最小的为准* 5、如果 当前数据的事件时间 < 当前的 watermark,就是迟到数据,主流的 process 不处理* => between 后,可以指定将 左流 或 右流的迟到数据放入侧输出流* *///1. 分别做 keyby,key 其实就是关联条件KeyedStream<Tuple2<String, Integer>, String> ks1 = ds1.keyBy(r1 -> r1.f0);KeyedStream<Tuple3<String, Integer, Integer>, String> ks2 = ds2.keyBy(r2 -> r2.f0);//2. 调用 interval join// 左右测输出流迟到标签OutputTag<Tuple2<String, Integer>> ks1LateTag = new OutputTag<>("ks1-late", Types.TUPLE(Types.STRING, Types.INT));OutputTag<Tuple3<String, Integer, Integer>> ks2LateTag = new OutputTag<>("ks2-late", Types.TUPLE(Types.STRING, Types.INT, Types.INT));SingleOutputStreamOperator<String> process = ks1.intervalJoin(ks2).between(Time.seconds(-2), Time.seconds(2)) // 指定上下界.sideOutputLeftLateData(ks1LateTag) // 将ks1的迟到数据,放入侧输出流.sideOutputRightLateData(ks2LateTag) // 将ks2的迟到数据,放入侧输出流.process(new ProcessJoinFunction<Tuple2<String, Integer>, Tuple3<String, Integer, Integer>, String>() {/*** 两条流的数据匹配上,才会调用这个方法* @param left ks1 的数据* @param right ks2 的数据* @param ctx 上下文* @param out 采集器*/@Overridepublic void processElement(Tuple2<String, Integer> left, Tuple3<String, Integer, Integer> right, Context ctx, Collector<String> out) throws Exception {// 进入这个方法,是关联上的数据out.collect(left + "<------>" + right);}});process.print("主流");process.getSideOutput(ks1LateTag).printToErr("ks1迟到数据");process.getSideOutput(ks2LateTag).printToErr("ks2迟到数据");env.execute();}
}
http://www.ds6.com.cn/news/4136.html

相关文章:

  • 网站文章更新要求互联网推广的优势
  • 我要建企业营销型网站网络科技公司骗了我36800
  • 广东工程建设监理有限公司网站下载百度
  • 钓鱼网站图片武汉网络推广seo
  • 新疆工程建设云网站百度营销模式
  • 广西住房和城乡建设局官网优化大师官网入口
  • 长春高铁站广告网站策划方案
  • 网站建设 前沿文章网络营销网站平台有哪些
  • 网址缩短链接温州seo按天扣费
  • 好的办公室设计seo百科大全
  • 贵阳网站建设 赶集怎样精选关键词进行网络搜索
  • 展示型网站首页设计解析seo全网优化推广
  • 东莞网站制作公司怎么选择竞价托管一般多少钱
  • 做网站工资多少好的产品怎么推广语言
  • [网络收集]form表单及网站开发中常用js表单取值方法seo推广优化排名软件
  • 17网站一起做网店图片工具免费网站seo优化
  • 镇江做网站seo网站seo优化工具
  • 武进建设银行网站首页谷歌广告优化师
  • 哪个网站做设计兼职不用压金百度知道合伙人官网登录入口
  • 湖北网站建设哪家专业seo网站优化网站编辑招聘
  • 创建一个b2c网站得多少钱seo关键词报价查询
  • 一个外国人建设的中国文字网站深圳网络优化推广公司
  • 网页制作与设计源代码seo实战培训中心
  • 做一个网站需要哪些资源宁波网站建设的公司
  • wordpress网页登录淘宝怎么优化关键词步骤
  • 电商 企业网站 福州链接推广
  • 网站地图插件crm系统成功案例分享ppt
  • 帮别人做钓鱼网站 公安seo品牌优化百度资源网站推广关键词排名
  • 黄页88怎么上传商品seo分析与优化实训心得
  • 做计算机题目的网站推广技术