当前位置: 首页 > news >正文

搭建本地网站设计网站一般多少钱

搭建本地网站,设计网站一般多少钱,求一个做烧肉的网站,大沥九江网站制作【ChatGLM2-6B】小白入门及Docker下部署 注意:Docker基于镜像中网盘上上传的有已经做好的镜像,想要便捷使用的可以直接从Docker基于镜像安装看Docker从0安装前提下载启动访问 Docker基于镜像安装容器打包操作(生成镜像时使用的命令&#xff0…

【ChatGLM2-6B】小白入门及Docker下部署

  • 注意:Docker基于镜像中网盘上上传的有已经做好的镜像,想要便捷使用的可以直接从Docker基于镜像安装看
  • Docker从0安装
    • 前提
    • 下载
    • 启动
    • 访问
  • Docker基于镜像安装
    • 容器打包操作(生成镜像时使用的命令)
    • 安装时命令
  • 微调
    • 前提
    • 微调和验证文件准备
    • 微调和验证文件格式转换
    • 修改微调脚本
    • 执行微调
    • 微调完成
    • 结果推理验证
    • 报错解决
      • 出现了$‘\r’: command not found错误
  • 加载微调模型
  • API接口调用

注意:Docker基于镜像中网盘上上传的有已经做好的镜像,想要便捷使用的可以直接从Docker基于镜像安装看

Docker从0安装

前提

  • 安装好了docker
  • 安装好了NVIDIA
  • 显卡16G

下载

  • 新建一个文件夹,用来存放下载下来的ChatGLM3代码和模型

  • 右键,打开一个git窗口,拉取模型(会很慢,耐心等待)

    • 地址: https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary
    git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git
    

    在这里插入图片描述

  • 右键,打开一个git窗口,拉取源代码

    • 地址:https://github.com/THUDM/ChatGLM3
    git clone https://github.com/THUDM/ChatGLM3
    

    git clone https://ghproxy.com/https://github.com/THUDM/ChatGLM3
    

在这里插入图片描述

  • 注意:将下载好的模型(chatglm3-6b-models)和代码放到一个目录里面,并上传到服务器上

启动

docker run -itd --name chatglm3 -v `pwd`/ChatGLM3:/data \
--gpus=all -e NVIDIA_DRIVER_CAPABILITIES=compute,utility -e NVIDIA_VISIBLE_DEVICES=all \
-p 8501:8501 pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel
# 进入启动好的容器
docker exec -it chatglm3 bash# 设置pip3下载路径为国内镜像
cd /data
pip3 config set global.index-url https://mirrors.aliyun.com/pypi/simple 
pip3 config set install.trusted-host mirrors.aliyun.com# 安装基础依赖
pip3  install -r requirements.txt

修改模型路径
在这里插入图片描述

启动

streamlit run basic_demo/web_demo2.py

在这里插入图片描述

访问

http://10.22.2.18:8501/

在这里插入图片描述

Docker基于镜像安装

容器打包操作(生成镜像时使用的命令)

  • 将安装好、启动好的容器打包成镜像

    docker commit -m='glm3 commit' -a='zhangzh' chatglm3 chatglm3-6b:1.1
    
  • 将镜像,打成可以传到其他地方的tar包

    docker save -o chatglm3-6b.tar chatglm3-6b:1.1
    

安装时命令

  • 网盘地址

    ​ 这里因为网盘上传文件有大小限制,所以使用了分卷压缩的方式进行了上传,全部下载下来就可以。

    链接:https://pan.baidu.com/s/1wY3QqaWrMyBR39d2ZhN_Kg?pwd=9zdd 
    提取码:9zdd
    

    在这里插入图片描述

  • 将下载好的镜像文件和代码模型文件上传到服务器上,并进行解压,然后在该目录进行操作。

  • 在其他的docker服务器加载镜像

    docker load -i chatglm3-6b.tar
    
  • 启动

    docker run -itd --name chatglm3 -v `pwd`/ChatGLM3:/data \
    --gpus=all -e NVIDIA_DRIVER_CAPABILITIES=compute,utility -e NVIDIA_VISIBLE_DEVICES=all \
    -p 8501:8501 -p 8000:8000 chatglm3-6b:1.1
    
  • 进入容器

    docker exec -it chatglm3 bash
    
  • 启动

    cd /data 
    streamlit run basic_demo/web_demo2.py
    
  • 访问:http://10.22.2.18:8501/

微调

微调操作直接在docker内进行

 docker exec -it chatglm3 bash

前提

运行示例需要 python>=3.9,除基础的 torch 依赖外,示例代码运行还需要依赖

pip install transformers==4.30.2 accelerate sentencepiece astunparse deepspeed

微调和验证文件准备

微调参数文件为.json文件,先将你的微调数据和验证数据处理成如下格式:

{"content": "类型#裤*版型#宽松*风格#性感*图案#线条*裤型#阔腿裤", "summary": "宽松的阔腿裤这两年真的吸粉不少,明星时尚达人的心头爱。毕竟好穿时尚,谁都能穿出腿长2米的效果宽松的裤腿,当然是遮肉小能手啊。上身随性自然不拘束,面料亲肤舒适贴身体验感棒棒哒。系带部分增加设计看点,还让单品的设计感更强。腿部线条若隐若现的,性感撩人。颜色敲温柔的,与裤子本身所呈现的风格有点反差萌。"}
{"content": "类型#裙*风格#简约*图案#条纹*图案#线条*图案#撞色*裙型#鱼尾裙*裙袖长#无袖", "summary": "圆形领口修饰脖颈线条,适合各种脸型,耐看有气质。无袖设计,尤显清凉,简约横条纹装饰,使得整身人鱼造型更为生动立体。加之撞色的鱼尾下摆,深邃富有诗意。收腰包臀,修饰女性身体曲线,结合别出心裁的鱼尾裙摆设计,勾勒出自然流畅的身体轮廓,展现了婀娜多姿的迷人姿态。"}
{"content": "类型#上衣*版型#宽松*颜色#粉红色*图案#字母*图案#文字*图案#线条*衣样式#卫衣*衣款式#不规则", "summary": "宽松的卫衣版型包裹着整个身材,宽大的衣身与身材形成鲜明的对比描绘出纤瘦的身形。下摆与袖口的不规则剪裁设计,彰显出时尚前卫的形态。被剪裁过的样式呈现出布条状自然地垂坠下来,别具有一番设计感。线条分明的字母样式有着花式的外观,棱角分明加上具有少女元气的枣红色十分有年轻活力感。粉红色的衣身把肌肤衬托得很白嫩又健康。"}
{"content": "类型#裙*版型#宽松*材质#雪纺*风格#清新*裙型#a字*裙长#连衣裙", "summary": "踩着轻盈的步伐享受在午后的和煦风中,让放松与惬意感为你免去一身的压力与束缚,仿佛要将灵魂也寄托在随风摇曳的雪纺连衣裙上,吐露出<UNK>微妙而又浪漫的清新之意。宽松的a字版型除了能够带来足够的空间,也能以上窄下宽的方式强化立体层次,携带出自然优雅的曼妙体验。"}

其中content是向模型输入的内容,summary为模型应该输出的内容。

其中微调数据是通过本批数据对模型进行调试(文件是train.json),验证数据是通过这些数据验证调试的结果(文件是dev.json)。

微调和验证文件格式转换

1、在项目代码的finetune_demo目录下新建一个AdvertiseGen目录,并将你的文件上传上去。

在这里插入图片描述

2、然后回到finetune_demo目录,执行以下脚本进行转换,转换后的文件放在formatted_data目录下。

python ./scripts/format_advertise_gen.py --path "AdvertiseGen/train.json"

在这里插入图片描述

修改微调脚本

本方法使用的微调脚本是finetune_demo/scripts/finetune_pt.sh,修改各个参数为自己的环境,其中:

PRE_SEQ_LEN: 模型长度,后续使用微调结果加载时要保持一直
MAX_SOURCE_LEN:模型输入文本的长度,超过该长度会截取,会影响占用GPU,我这里GPU为16G基本吃满
MAX_TARGET_LEN:模型输出文本的最大长度,会影响占用GPU,我这里GPU为16G基本吃满
BASE_MODEL_PATH:原模型的地址
DATASET_PATH:模型微调参数文件的地址
OUTPUT_DIR:模型微调结果存放的地址
MAX_STEP:调试的步数,主要跟微调需要的时间有关,越小则时间越短,但微调的准确度(影响度)越小
SAVE_INTERVAL:多少步保存一个微调结果

在这里插入图片描述

脚本如下:

#! /usr/bin/env bashset -exPRE_SEQ_LEN=128
LR=2e-2
NUM_GPUS=1
MAX_SOURCE_LEN=512
MAX_TARGET_LEN=64
DEV_BATCH_SIZE=1
GRAD_ACCUMULARION_STEPS=32
MAX_STEP=1500
SAVE_INTERVAL=500DATESTR=`date +%Y%m%d-%H%M%S`
RUN_NAME=advertise_gen_ptBASE_MODEL_PATH=/data/chatglm3-6b-models
DATASET_PATH=formatted_data/advertise_gen.jsonl
OUTPUT_DIR=output/${RUN_NAME}-${DATESTR}-${PRE_SEQ_LEN}-${LR}mkdir -p $OUTPUT_DIRtorchrun --standalone --nnodes=1 --nproc_per_node=$NUM_GPUS finetune.py \--train_format input-output \--train_file $DATASET_PATH \--preprocessing_num_workers 1 \--model_name_or_path $BASE_MODEL_PATH \--output_dir $OUTPUT_DIR \--max_source_length $MAX_SOURCE_LEN \--max_target_length $MAX_TARGET_LEN \--per_device_train_batch_size $DEV_BATCH_SIZE \--gradient_accumulation_steps $GRAD_ACCUMULARION_STEPS \--max_steps $MAX_STEP \--logging_steps 1 \--save_steps $SAVE_INTERVAL \--learning_rate $LR \--pre_seq_len $PRE_SEQ_LEN 2>&1 | tee ${OUTPUT_DIR}/train.log

执行微调

先给脚本执行权限

chmod -R 777 ./scripts/finetune_pt.sh

执行脚本

./scripts/finetune_ds.sh  # 全量微调
./scripts/finetune_pt.sh  # P-Tuning v2 微调

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

微调完成

在这里插入图片描述

结果推理验证

python inference.py \--pt-checkpoint "/data/finetune_demo/output/advertise_gen_pt-20231123-022517-128-2e-2/checkpoint-1500" \--model /data/chatglm3-6b-models

报错解决

出现了$‘\r’: command not found错误

可能因为该Shell脚本是在Windows系统编写时,每行结尾是\r\n
而在Linux系统中行每行结尾是\n
在Linux系统中运行脚本时,会认为\r是一个字符,导致运行错误

使用dos2unix 转换一下就可以了

dos2unix <文件名># dos2unix: converting file one-more.sh to Unix format ...

-bash: dos2unix: command not found

就是还没安装,安装一下就可以了

apt install dos2unix

加载微调模型

cd ../composite_demo
MODEL_PATH="/data/chatglm3-6b-models" PT_PATH="/data/finetune_demo/output/advertise_gen_pt-20231123-022517-128-2e-2/checkpoint-1500" streamlit run main.py

重新访问页面,即可啦~

API接口调用

  • 下载依赖

    pip install openai==1.3.0
    pip install pydantic==2.5.1
    
  • 进入openai_api_demo目录

  • 修改脚本

在这里插入图片描述

  • 启动脚本

    python openai_api_wt.py
    
  • 访问SwaggerUI地址

    http://10.22.2.18:8000/docs#/default/list_models_v1_models_get

    接口:http://10.22.2.18:8000/v1/chat/completions

    参数:

    {"model": "chatglm3-6b","messages": [{"role": "user","content": "你好,给我讲一个故事,大概100字"  # 这里是请求的参数}],"stream": false,"max_tokens": 100,"temperature": 0.8,"top_p": 0.8
    }
    
http://www.ds6.com.cn/news/28723.html

相关文章:

  • 西安网站建设报价方案软文是啥意思
  • 建设网站服务器百度推广天天打骚扰电话
  • 三合一网站制作价格怎样策划一个营销型网站
  • 自己的域名怎么做网站进入百度app
  • 重庆网站建设cav手机在线精品
  • 做摄影和后期的兼职网站广告推销网站
  • 个人网页主页seo 优化 服务
  • 手机网站在后台怎么做编辑百度推广代理怎么加盟
  • 单人做网站需要掌握哪些知识内江seo
  • 东阳网站建设个人怎么做网络推广
  • 返利淘网站怎么做广州推广排名
  • 广告公司seo是什么职位seo上排名
  • 绥化市建设局网站发软文是什么意思
  • 做网站多少钱zwnet河北百度代理公司
  • 做云盘网站哪个好电商代运营公司
  • win8网站模版网站怎么建设
  • 宠物网站页面设计css网站 推广
  • salient wordpressseo资源是什么意思
  • 关于网络营销的网站百度助手下载安装
  • 苏州公司网站建设价格持续优化完善防控措施
  • 百度搜索推广流程英文谷歌seo
  • 虫虫wap建站源码全媒体运营师报考官网在哪里
  • 建湖专业做网站网络营销和传统营销的区别和联系
  • 海珠区建网站企业营销策划及推广
  • 南阳网站建设多少钱互联网营销师考证多少钱
  • 漂亮的网站设计谷歌首页
  • 网站的优点和缺点互联网营销的方法有哪些
  • 南通网站开发如何注册一个域名
  • 策划对于企业网站建设来说2021年新闻摘抄
  • 如何给网站加二级域名企业网站建设的目的