当前位置: 首页 > news >正文

网站改用绝对地址的好处关键字优化

网站改用绝对地址的好处,关键字优化,08系统iis信息管理器怎么建设网站,软件开发的五个阶段基础知识: 先验概率:对某个事件发生的概率的估计。可以是基于历史数据的估计,可以由专家知识得出等等。一般是单独事件概率。 后验概率:指某件事已经发生,计算事情发生是由某个因素引起的概率。一般是一个条件概率。 …

基础知识:
先验概率:对某个事件发生的概率的估计。可以是基于历史数据的估计,可以由专家知识得出等等。一般是单独事件概率。

后验概率:指某件事已经发生,计算事情发生是由某个因素引起的概率。一般是一个条件概率。

条件概率:条件事件发生后,另一个事件发生的概率。一般的形式为 P ( B ∣ A ) P(B|A) P(BA),表示 A A A发生的条件下 B B B发生的概率。
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac {P(AB)}{P(A)} P(BA)=P(A)P(AB)
贝叶斯公式基于先验概率,计算后验概率的方法;公式为:
P ( A ∣ B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) P(A|B) = \frac {P(B|A) \cdot P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

  • P ( A ∣ B ) P(A∣B) P(AB): 在事件  B B B 发生的条件下,事件  A A A 发生的概率(后验概率)。
  • P ( B ∣ A ) P(B | A) P(BA):在事件 A A A 发生的条件下,事件 B B B 的发生概率(似然概率)。
  • P ( A ) P(A) P(A):事件 A A A 发生的先验概率(先验知识)。
  • P ( B ) P(B) P(B):事件 B B B 发生的总概率。

贝叶斯公式可以从条件概率和全概率公式推导得出:

  1. 条件概率定义:
    P ( A ∣ B ) = P ( A ∩ B ) P ( B ) , P ( B ∣ A ) = P ( A ∩ B ) P ( A ) P(A | B) = \frac {P(A \cap B)}{P(B)}, P(B|A) = \frac {P(A \cap B)}{P(A)} P(AB)=P(B)P(AB),P(BA)=P(A)P(AB)
  2. 公式联立:
    P ( A ∩ B ) = P ( B ∣ A ) ⋅ P ( A ) = P ( A ∣ B ) ⋅ P ( B ) P(A \cap B) = P(B|A) \cdot P(A) = P(A | B) \cdot P(B) P(AB)=P(BA)P(A)=P(AB)P(B)
  3. 整理得到贝叶斯公式:
    P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A | B) = \frac {P(B | A) P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)
  • 贝叶斯公式:将先验概率  P ( A ) P(A) P(A)、似然概率  P ( B ∣ A ) P(B∣A) P(BA) 和证据  P ( B ) P(B) P(B) 结合,计算后验概率 P ( A ∣ B ) P(A∣B) P(AB)

朴素贝叶斯做出了一个假设”属性条件独立假设“:对所有已知标签的样本,假设每个属性独立地对标签结果产生影响。(这是一个很强的条件)

假设样本为: x = { a 1 , a 2 , . . . , a d } x=\{a_{1}, a_{2}, ..., a_{d} \} x={a1,a2,...,ad},label为 Y = { c 1 , c 2 , c 3 , . . . , c n } Y = \{c_{1}, c_{2}, c_{3}, ...,c_{n} \} Y={c1,c2,c3,...,cn};则计算这样一个样本 x x x 的所属类别的公式为:
P ( c k ∣ x ) = max ⁡ { P ( c 1 ∣ x ) , P ( c 2 ∣ x ) , P ( c 3 ∣ x ) , . . . , P ( c n ∣ x ) } P(c_{k} | x) = \max \{ P(c_{1} |x), P(c_{2} | x), P(c_{3} | x), ..., P(c_{n} |x)\} P(ckx)=max{P(c1x),P(c2x),P(c3x),...,P(cnx)}
基于条件独立假设;可以得到
P ( c ∣ x ) = P ( c ) P ( x ∣ c ) P ( x ) = P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ c ) P(c|x) = \frac {P(c)P(x|c)}{P(x)} = \frac {P(c)}{P(x)} \prod_{i=1}^{d} P(x_{i}|c) P(cx)=P(x)P(c)P(xc)=P(x)P(c)i=1dP(xic)
其中 d d d为属性数目, x i x_{i} xi x x x 在第 i i i 个属性上的取值。
我们重写上述公式:
h n b ( x ) = max ⁡ { P ( c 1 ∣ x ) , P ( c 2 ∣ x ) , P ( c 3 ∣ x ) , . . . , P ( c n ∣ x ) } = arg ⁡ max ⁡ c ∈ Y P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ C ) = arg ⁡ max ⁡ c ∈ Y P ( c ) ∏ i = 1 d P ( x i ∣ C ) \begin{align} h_{nb}(x) &= \max \{ P(c_{1} |x), P(c_{2} | x), P(c_{3} | x), ..., P(c_{n} |x)\} \\ &= \arg \max_{c \in Y} \frac {P(c)}{P(x)} \prod_{i=1}^{d}P(x_{i} | C) \\ &= \arg \max_{c \in Y} P(c) \prod_{i=1}^{d}P(x_{i} | C) \end{align} hnb(x)=max{P(c1x),P(c2x),P(c3x),...,P(cnx)}=argcYmaxP(x)P(c)i=1dP(xiC)=argcYmaxP(c)i=1dP(xiC) D c D_{c} Dc 表示训练集 D D D 中第 c c c 类样本组成的集合,若有充足的独立同分布样本,则可以容易地估计出类别的先验概率:
P ( c ) = ∣ D c ∣ ∣ D ∣ P(c) = \frac {|D_{c}|}{|D|} P(c)=DDc
对于离散属性而言,令 D c , x i D_{c, x_{i}} Dc,xi 表示 D c D_{c} Dc 中第 i i i 个属性上取值为 x i x_{i} xi 的样本组成的集合,则条件概率 P ( x i ∣ c ) P(x_{i} |c) P(xic) 可估计为:
P x i ∣ c = ∣ D c , x i ∣ ∣ D c ∣ P{x_{i} | c} = \frac {|D_{c, x_{i}}|}{|D_{c}|} Pxic=DcDc,xi
对于连续属性可考虑概率密度函数,假定 p ( x i ∣ c ) ∼ N ( μ c , i , σ c , i 2 ) p(x_{i}|c) \sim \mathcal{N}(\mu _{c, i}, \sigma _{c,i}^{2}) p(xic)N(μc,i,σc,i2)d,其中 μ c , i \mu_{c, i} μc,i σ c , i 2 \sigma_{c, i}^{2} σc,i2分别是第 c c c 类样本在第 i i i 个属性上取值的均值和方差,则有:
p ( x i ∣ c ) = 1 2 π σ c , i exp ⁡ ( − ( x i − μ c , i ) 2 2 σ c , i 2 ) p(x_{i} | c) = \frac {1}{\sqrt{2 \pi} \sigma_{c, i}} \exp (- \frac {(x_{i}-\mu_{c, i})^2}{2 \sigma_{c, i}^{2}}) p(xic)=2π σc,i1exp(2σc,i2(xiμc,i)2)

http://www.ds6.com.cn/news/21456.html

相关文章:

  • 城市建设管理宁波seo网络推广渠道介绍
  • wordpress插件留言墙关于进一步优化当前疫情防控措施
  • 有什么网站可以做六级题目嘛营销案例100例小故事
  • 免费建设旅游网站国外免费推广平台有哪些
  • 网站负责人不是法人网站设计公司排名
  • 手机电影网站怎么做的网站关键词排名查询
  • 做网站要学哪些上海seo推广
  • 请人做网站注意事项优化seo是什么意思
  • 泰安网络运营seo是什么职位
  • 做购物网站的开题报告百度一下京东
  • 网站开发要怎么学搜狗搜索引擎网页
  • 2018网站建设行业关键词优化排名用什么软件比较好
  • 方便面网络营销推广方案厦门seo排名扣费
  • 做美女网站有哪些0元免费做代理
  • 静态网站南宁网站建设公司排行
  • 机关网站源码乐云seo
  • 企业公司黄页大全北京网站优化合作
  • 中国铁路总公司建设管理部网站网站制作报价表
  • 如何将图片插入网站seo前线
  • 网站开发合肥广州企业网站建设
  • 中国做网站的公司丈哥seo博客
  • 武汉光谷律师seo 百度网盘
  • 政府网站建设项目背景ping站长工具
  • 长春网站优化实战谷歌搜索引擎网址
  • 建设网站带后台管理灰色关键词快速排名
  • 学做网站在哪里定制网站和模板建站
  • 网站集约化建设的通知个人免费开发app
  • 郑州便宜网站建设费用查看关键词被搜索排名的软件
  • 徐州关键字优化公司windows优化大师在哪里
  • 桂林建设网站企业培训课程价格