当前位置: 首页 > news >正文

男女做那个网站宁德市人民政府

男女做那个网站,宁德市人民政府,软件设计师中级资料,详情页制作网站docker本地搭建spark yarn hive环境 前言软件版本准备工作使用说明构建基础镜像spark on yarn模式构建on-yarn镜像启动on-yarn集群手动方式自动方式 spark on yarn with hive(derby server)模式构建on-yarn-hive镜像启动on-yarn-hive集群手动方式自动方式 常用示例spark执行sh脚…

docker本地搭建spark yarn hive环境

  • 前言
  • 软件版本
  • 准备工作
  • 使用说明
  • 构建基础镜像
  • spark on yarn模式
    • 构建on-yarn镜像
    • 启动on-yarn集群
      • 手动方式
      • 自动方式
  • spark on yarn with hive(derby server)模式
    • 构建on-yarn-hive镜像
    • 启动on-yarn-hive集群
      • 手动方式
      • 自动方式
  • 常用示例
    • spark执行sh脚本
    • Java远程提交Yarn任务
      • maven部分依赖
      • java代码
  • 参考资料

前言


为了学习大数据处理相关技术,需要相关软件环境作为支撑实践的工具。而这些组件的部署相对繁琐,对于初学者来说不够友好。本人因为工作中涉及到该部分内容,通过参考网上的资料,经过几天摸索,实现了既简单又快捷的本地环境搭建方法。特写下该文章,加以记录,以期能够给初学者一些参考和帮助。

本文主要介绍基于docker在本地搭建spark on yarn以及hive(采用derby服务模式)。为什么没有使用mysql作为hive的metastore呢?因为既然是作为学习和测试用的环境,尽量让其保持简单,derby数据库不需要单独配置,直接启动即可使用,足够轻量和简便。

完整的代码已经提交到gitee spark-on-yarn-hive-derby

软件版本

组件版本
spark镜像bitnami/spark:3.1.2
hadoop3.2.0
hive3.1.2
derby10.14.2.0

准备工作

  1. 下载gitee代码 https://gitee.com/crazypandariy/spark-on-yarn-hive-derby
  2. 下载derby(https://archive.apache.org/dist/db/derby/db-derby-10.14.2.0/db-derby-10.14.2.0-bin.tar.gz) ,移动到spark-on-yarn-hive-derby-master目录(和start-hadoop.sh处于同级目录中)
  3. 下载hadoop(https://archive.apache.org/dist/hadoop/common/hadoop-3.2.0/hadoop-3.2.0.tar.gz),移动到spark-on-yarn-hive-derby-master目录

使用说明

config/workers中配置的是作为工作节点的hostname,这个必须要和docker-compose-.yml中定义的hostname;保持一致
config/ssh_config用于免密登录
config中涉及到hostname的配置文件有core-site.xml、hive-site.xml、spark-hive-site.xml、yarn-site.xml,一定要和docker-compose-
.yml中定义的hostname保持一致;

  1. 构建基础镜像
  2. 构建on-yarn 镜像
  3. 构建on-yarn-hive镜像

构建基础镜像

采用spark成熟镜像方案 bitnami/spark:3.1.2 作为原始镜像,在此基础上安装openssh,制作免密登录的基础镜像。由于master和worker节点均基于该基础镜像,其中的ssh密钥均相同,可以简化安装部署。

docker build -t my/spark-base:3.1.2 base/Dockerfile .

spark on yarn模式

构建on-yarn镜像

docker build -t my/spark-hadoop:3.1.2 -f on-yarn/Dockerfile .

启动on-yarn集群

手动方式

# 创建集群
docker-compose -f on-yarn/docker-compose-manul.yml -p spark up -d
# 启动hadoop
docker exec -it spark-master-1 sh /opt/start-hadoop.sh# 停止集群
docker-compose -f on-yarn/docker-compose-manul.yml -p spark stop
# 删除集群
docker-compose -f on-yarn/docker-compose-manul.yml -p spark down# 启动集群
docker-compose -f on-yarn/docker-compose-manul.yml -p spark start
# 启动hadoop
docker exec -it spark-master-1 sh /opt/start-hadoop.sh

自动方式

# 创建集群
docker-compose -f on-yarn/docker-compose-auto.yml -p spark up -d
# 停止集群
docker-compose -f on-yarn/docker-compose-auto.yml -p spark stop
# 启动集群
docker-compose -f on-yarn/docker-compose-auto.yml -p spark start
# 删除集群
docker-compose -f on-yarn/docker-compose-auto.yml -p spark down

spark on yarn with hive(derby server)模式

构建on-yarn-hive镜像

docker build -t my/spark-hadoop-hive:3.1.2 -f on-yarn-hive/Dockerfile .

启动on-yarn-hive集群

手动方式

# 创建集群
docker-compose -f on-yarn-hive/docker-compose-manul.yml -p spark up -d
# 启动hadoop
docker exec -it spark-master-1 sh /opt/start-hadoop.sh
# 启动hive
docker exec -it spark-master-1 sh /opt/start-hive.sh# 停止集群
docker-compose -f on-yarn-hive/docker-compose-manul.yml -p spark stop
# 删除集群
docker-compose -f on-yarn-hive/docker-compose-manul.yml -p spark down# 启动集群
docker-compose -f on-yarn-hive/docker-compose-manul.yml -p spark start
# 启动hadoop
docker exec -it spark-master-1 sh /opt/start-hadoop.sh
# 启动hive
docker exec -it spark-master-1 sh /opt/start-hive.sh

自动方式

# 创建集群
docker-compose -f on-yarn-hive/docker-compose-auto.yml -p spark up -d
# 停止集群
docker-compose -f on-yarn-hive/docker-compose-auto.yml -p spark stop
# 启动集群
docker-compose -f on-yarn-hive/docker-compose-auto.yml -p spark start
# 删除集群
docker-compose -f on-yarn-hive/docker-compose-auto.yml -p spark down

常用示例

spark执行sh脚本

spark-shell --master yarn << EOF
// 脚本内容
// 示例
val data = Array(1,2,3,4,5)
val distData = sc.parallelize(data)
val sum = distData.reduce((a,b)=>a+b)
println("Sum: "+sum)
EOF

Java远程提交Yarn任务

  • 进入master容器,创建demo表,命令 hive -e "create table demo(name string)"
  • 创建maven项目,将core-site.xml yarn-site.xml hdfs-site.xml hive-site.xml等文件拷贝到src/main/resources
  • 将 local-spark-worker1 和 local-spark-master 指向本地虚拟网络适配器的IP地址

例如,我用的是windows系统,则使用SwitchHosts软件,修改上述hostname指向的IP地址,其中192.168.138.1是虚拟网络适配器的IP

192.168.138.1 local-spark-worker1
192.168.138.1 local-spark-master

上传spark依赖jar包

hdfs dfs -mkdir -p /spark/jars
hdfs dfs -put -f /opt/bitnami/spark/jars/* /spark/jars

maven部分依赖

		<dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.1.2</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-yarn_2.12</artifactId><version>3.1.2</version></dependency><dependency><groupId>org.junit.jupiter</groupId><artifactId>junit-jupiter</artifactId><version>5.9.1</version><scope>test</scope></dependency>

java代码

以cluster模式提交spark-sql;浏览器输入http://localhost:9870打开hdfs管理界面,创建目录/user/my,进入该目录并上传spark-sql-cluster.jar

package org.demo.spark;import org.apache.spark.SparkConf;
import org.apache.spark.deploy.yarn.Client;
import org.apache.spark.deploy.yarn.ClientArguments;
import org.junit.jupiter.api.Test;public class SparkOnYarnTest {@Testpublic void yarnApiSubmit() {// prepare arguments to be passed to // org.apache.spark.deploy.yarn.Client objectString[] args = new String[] {"--jar","hdfs:///user/my/spark-sql-cluster.jar","--class", "org.apache.spark.sql.hive.cluster.SparkSqlCliClusterDriver","--arg", "spark-internal","--arg", "-e","--arg", "\\\"insert into demo(name) values('zhangsan')\\\""};// identify that you will be using Spark as YARN mode
//        System.setProperty("SPARK_YARN_MODE", "true");// create an instance of SparkConf objectString appName = "Yarn Client Remote App";SparkConf sparkConf = new SparkConf();sparkConf.setMaster("yarn");sparkConf.setAppName(appName);sparkConf.set("spark.submit.deployMode", "cluster");sparkConf.set("spark.yarn.jars", "hdfs:///spark/jars/*.jar");sparkConf.set("spark.hadoop.yarn.resourcemanager.hostname", "local-spark-master");sparkConf.set("spark.hadoop.yarn.resourcemanager.address", "local-spark-master:8032");sparkConf.set("spark.hadoop.yarn.resourcemanager.scheduler.address", "local-spark-master:8030");// create ClientArguments, which will be passed to ClientClientArguments cArgs = new ClientArguments(args);// create an instance of yarn Client clientClient client = new Client(cArgs, sparkConf, null);// submit Spark job to YARNclient.run();}
}

参考资料

使用 Docker 快速部署 Spark + Hadoop 大数据集群
SparkSQL 与 Hive 整合关键步骤解析
spark-sql-for-cluster

http://www.ds6.com.cn/news/11710.html

相关文章:

  • 个人网站建设的国外文献综述企业线上培训课程
  • 网站建设常用代码网站建站哪家公司好
  • 雷达图 做图网站百度公司排名
  • 大连设计网站公司企业官方网站有哪些
  • wordpress翻译公司seo去哪里培训
  • 找柳市做网站播放量自助下单平台
  • 网站页面太多是否做静态精品成品网站源码
  • 中国建设银行网站人工客服电话seo网站推广经理招聘
  • 1688外贸平台网站优化的方式有哪些
  • 做网站 程序员 暴富天津网站排名提升
  • 微信小程序网页制作镇江交叉口优化
  • 深圳机械加工厂百度seo怎么把关键词优化上去
  • 巴中市建设局新网站保定seo博客
  • 建设部网站录入业绩谷歌搜索引擎下载安装
  • 网站建设基本知识百度云引擎搜索
  • 模板网站建设珠海北京seo实战培训班
  • 无锡建站模板系统企业网站建设的作用
  • 企业网站规划seo内部优化方式包括
  • 时尚网站欣赏哈尔滨seo整站优化
  • 同一个wifi下_我如何用手机访问我用我电脑做服务器的网站软件外包公司是什么意思
  • 北京平台网站建设方案百度官方免费下载安装
  • 如何用代码做网站项目网
  • 高淳网站建设百度自动点击器怎么用
  • 公司网站建设方面不足百度关键词是怎么排名靠前
  • 网站开发岗位职责任职责格杭州网站推广平台
  • 手机网站的特效郑州网络推广方案
  • 怎么做简单的网站首页2345网址导航安装
  • 大连 响应式网站制作如何在百度免费发布广告
  • 网站建设一般要提供什么内容临沂森工木业有限公司
  • 上海网站建设公司网站建设网站开发报价方案