当前位置: 首页 > news >正文

可以帮别人备案网站吗靠谱的影视后期培训班

可以帮别人备案网站吗,靠谱的影视后期培训班,建一个公司网站多少钱?,武清做网站的逻辑回归是一种经典的分类算法,广泛应用于二分类问题。本文将介绍如何使用TensorFlow框架实现逻辑回归模型,并通过动态绘制决策边界和损失曲线来直观地观察模型的训练过程。 数据准备 首先,我们准备两类数据点,分别表示两个不同…

逻辑回归是一种经典的分类算法,广泛应用于二分类问题。本文将介绍如何使用TensorFlow框架实现逻辑回归模型,并通过动态绘制决策边界和损失曲线来直观地观察模型的训练过程。

数据准备

首先,我们准备两类数据点,分别表示两个不同的类别。这些数据点将作为模型的输入特征。

# 1.散点输入
class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])
class2_points=np.array([[3.2,3.2],[3.7,2.9],[3.2,2.6],[1.7,3.3],[3.4,2.6],[4.1,2.3],[3.0,2.9]])

将两类数据点合并为一个矩阵,并为每个数据点分配相应的标签(0或1)。

#不用单独提取出x1_data 和x2_data
#框架会根据输入特征数自动提取
x_train=np.concatenate((class1_points,class2_points),axis=0)
y_train=np.concatenate((np.zeros(len(class1_points)),np.ones(len(class2_points))))

将数据转换为TensorFlow张量,以便在模型中使用。

import tensorflow as tfx_train_tensor = tf.convert_to_tensor(x_train, dtype=tf.float32)
y_train_tensor = tf.convert_to_tensor(y_train, dtype=tf.float32)

模型定义

使用TensorFlow的tf.keras模块定义逻辑回归模型。模型包含一个输入层和一个输出层,输出层使用sigmoid激活函数。

def LogisticRegreModel():input = tf.keras.Input(shape=(2,))fc = tf.keras.layers.Dense(1, activation='sigmoid')(input)lr_model = tf.keras.models.Model(inputs=input, outputs=fc)return lr_modelmodel = LogisticRegreModel()

定义优化器和损失函数。这里使用随机梯度下降优化器和二元交叉熵损失函数。

opt = tf.keras.optimizers.SGD(learning_rate=0.01)
model.compile(optimizer=opt, loss="binary_crossentropy")

训练过程

训练模型时,我们记录每个epoch的损失值,并动态绘制决策边界和损失曲线。

 

import matplotlib.pyplot as pltfig, (ax1, ax2) = plt.subplots(1, 2)epochs = 500
epoch_list = []
epoch_loss = []for epoch in range(1, epochs + 1):y_pre = model.fit(x_train_tensor, y_train_tensor, epochs=50, verbose=0)epoch_loss.append(y_pre.history["loss"][0])epoch_list.append(epoch)w1, w2 = model.get_weights()[0].flatten()b = model.get_weights()[1][0]slope = -w1 / w2intercept = -b / w2x_min, x_max = 0, 5x = np.array([x_min, x_max])y = slope * x + interceptax1.clear()ax1.plot(x, y, 'r')ax1.scatter(x_train[:len(class1_points), 0], x_train[:len(class1_points), 1])ax1.scatter(x_train[len(class1_points):, 0], x_train[len(class1_points):, 1])ax2.clear()ax2.plot(epoch_list, epoch_loss, 'b')plt.pause(1)

结果展示

训练完成后,决策边界图将显示模型如何将两类数据分开,损失曲线图将显示模型在训练过程中的损失值变化。生成结果基本如图所示:

通过动态绘制决策边界和损失曲线,我们可以直观地观察模型的训练过程,了解模型如何逐渐学习数据的分布并优化决策边界。

总结

本文介绍了如何使用TensorFlow实现逻辑回归模型,并通过动态绘制决策边界和损失曲线来观察模型的训练过程。逻辑回归是一种简单而有效的分类算法,适用于二分类问题。通过TensorFlow框架,我们可以轻松地实现和训练逻辑回归模型,并利用其强大的功能来优化模型的性能。


完整代码

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# 1.散点输入
class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])
class2_points=np.array([[3.2,3.2],[3.7,2.9],[3.2,2.6],[1.7,3.3],[3.4,2.6],[4.1,2.3],[3.0,2.9]])#不用单独提取出x1_data 和x2_data
#框架会根据输入特征数自动提取
x_train=np.concatenate((class1_points,class2_points),axis=0)
y_train=np.concatenate((np.zeros(len(class1_points)),np.ones(len(class2_points))))
#转化为张量
x_train_tensor=tf.convert_to_tensor(x_train,dtype=tf.float32)
y_train_tensor=tf.convert_to_tensor(y_train,dtype=tf.float32)#2.定义前向模型
# 使用类的方式
# 先设置一下随机数种子
seed=0
tf.random.set_seed(0)def LogisticRegreModel():input=tf.keras.Input(shape=(2,))fc=tf.keras.layers.Dense(1,activation='sigmoid')(input)lr_model=tf.keras.models.Model(inputs=input,outputs=fc)return lr_model
#实例化网络
model=LogisticRegreModel()
#3.定义损失函数和优化器
#定义优化器
#需要输入模型参数和学习率
lr=0.1
opt=tf.keras.optimizers.SGD(learning_rate=0.01)
model.compile(optimizer=opt,loss="binary_crossentropy")# 最后画图
fig,(ax1,ax2)=plt.subplots(1,2)
#训练
epoches=500
epoch_list=[]
epoch_loss=[]
for epoch in range(1,epoches+1):# verbose=0 进度条不显示  epochs迭代次数y_pre=model.fit(x_train_tensor,y_train_tensor,epochs=50,verbose=0)# print(y_pre.history["loss"])epoch_loss.append(y_pre.history["loss"][0])epoch_list.append(epoch)w1,w2=model.get_weights()[0].flatten()b=model.get_weights()[1][0]#画左图# 使用斜率和截距画直线#目前将x2当作y轴 x1当作x轴# w1*x1+w2*x2+b=0#求出斜率和截距slope=-w1/w2intercept=-b/w2#绘制直线 开始结束位置x_min,x_max=0,5x=np.array([x_min,x_max])y=slope*x+interceptax1.clear()ax1.plot(x,y,'r')#画散点图ax1.scatter(x_train[:len(class1_points),0],x_train[:len(class1_points),1])ax1.scatter(x_train[len(class1_points):, 0],x_train[len(class1_points):, 1])#画右图ax2.clear()ax2.plot(epoch_list,epoch_loss,'b')plt.pause(1)

http://www.ds6.com.cn/news/110426.html

相关文章:

  • 大连网站设计案例关键词排名优化软件价格
  • 下载网站的表格要钱如何做网站模板源码
  • 网页设计总结5000字网站内部链接优化方法
  • 目前好的外贸网站专业海外网站推广
  • 网站开发补充协议 违约优化排名软件
  • 免费商城网站建站系统seo关键词优化工具
  • 北京高端企业网站建设网络推广公司排名
  • 重庆市住房和城乡建设网站友情链接格式
  • 北京建设银行网站田村站长工具高清无吗
  • 重庆网站建设技术支持重庆互联网百度关键词优化排名技巧
  • 团购网站功能模块网站快速排名优化价格
  • wordpress网站整站搬迁10种营销方法
  • 如何做网站效果图百度推广最近怎么了
  • 宁波网站推广方案什么是网店推广
  • html静态页面兼职青岛谷歌优化
  • 专业网站建设价位百度网盘客服24小时电话人工服务
  • 做情诗网站电脑清理软件十大排名
  • 网站建设职业培训重庆小潘seo
  • 铜陵58同城做网站百度站长平台官网登录入口
  • 服装行业网站建设比较好杭州seo平台
  • 南昌seo网站开发市场调研一般怎么做
  • 做调查问卷的网站有什么网络营销swot分析
  • 用ps做网站千锋教育培训机构就业率
  • 上海本地新闻网站百度热搜大数据
  • 新疆网站建设制作报价方案培训班该如何建站
  • 免费微信小程序商城好搜网惠州seo
  • 网站如何做外链企业线上培训平台
  • 京东网站建设策划书微指数官网
  • 杭州网站建设公司联系方式郑州seo优化阿亮
  • 全国免费自学网站网络培训心得体会总结