当前位置: 首页 > news >正文

做淘宝门头的网站正规的推文平台

做淘宝门头的网站,正规的推文平台,陕西企业网站建设哪家好,做外贸网站 怎么收钱概要 大多数LLM应用都有对话界面。对话的一个重要组成部分是能够引用对话中先前介绍的信息。至少,对话系统应该能够直接访问过去消息的某些窗口。更复杂的系统需要有一个不断更新的世界模型,这使得它能够执行诸如维护有关实体及其关系的信息之类的事情。…

概要

大多数LLM应用都有对话界面。对话的一个重要组成部分是能够引用对话中先前介绍的信息。至少,对话系统应该能够直接访问过去消息的某些窗口。更复杂的系统需要有一个不断更新的世界模型,这使得它能够执行诸如维护有关实体及其关系的信息之类的事情。

我们将这种存储过去交互信息的能力称为“记忆”。 LangChain 提供了许多用于向系统添加记忆的实用程序。这些实用程序可以单独使用,也可以无缝地合并到链中。

记忆系统需要支持两个基本操作:读和写。回想一下,每个链都定义了一些需要某些输入的核心执行逻辑。其中一些输入直接来自用户,但其中一些输入可以来自用户。在给定的运行中,一条链将与其记忆系统交互两次。

  1. 在收到初始用户输入之后但在执行核心逻辑之前,链将从其记忆系统中读取并增加用户输入。

  2. 在执行核心逻辑之后但在返回答案之前,链会将当前运行的输入和输出写入记忆,以便在将来的运行中引用它们。

在这里插入图片描述

将记忆构建到系统中

任何记忆系统中的两个核心设计决策是:

  • 状态如何存储
  • 如何查询状态

存储:聊天消息列表(Storing: List of chat messages)

任何记忆的基础都是所有聊天交互的历史记录。即使这些不全部直接使用,也需要以某种形式存储。

LangChain记忆模块的关键部分之一就是用于存储这些聊天消息的一系列集成,从记忆列表到持久数据库。

聊天消息存储:如何使用聊天消息以及提供的各种集成

查询:聊天消息之上的数据结构和算法(Querying: Data structures and algorithms on top of chat messages)

保留聊天消息列表相当简单。不太直接的是建立在聊天消息之上的数据结构和算法,它们提供了最有用的消息的视图。

一个非常简单的记忆系统可能只返回每次运行的最新消息。稍微复杂一点的记忆系统可能会返回过去 K 条消息的简洁摘要。更复杂的系统可能会从存储的消息中提取实体,并且仅返回有关当前运行中引用的实体的信息。

每个应用程序对于如何查询记忆可能有不同的要求。记忆模块应该可以轻松地开始使用简单的记忆系统,并在需要时编写您自己的自定义系统。

记忆类型:构成LangChain支持的记忆类型的各种数据结构和算法

开始使用

我们来看看LangChain中的记忆到底是什么样子的。在这里,我们将介绍与任意记忆类交互的基础知识。

我们来看看如何在链中使用ConversationBufferMemoryConversationBufferMemory 是一种极其简单的内存形式,它仅将聊天消息列表保存在缓冲区中并将其传递到提示模板中。

from langchain.memory import ConversationBufferMemorymemory = ConversationBufferMemory()
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")

从memory中返回哪些变量(What variables get returned from memory)

在进入链之前,从内存中读取各种变量。它有特定的名称,需要与链期望的变量保持一致。你可以通过调用memory.load_memory_variables({})来查看这些变量是什么。

请注意,我们传入的空字典只是实际变量的占位符。如果您使用的memory类型取决于输入变量,您可能需要传入一些变量。

memory.load_memory_variables({})

结果:

    {'chat_history': "Human: hi!\nAI: whats up?"}

在本例中,您可以看到 load_memory_variables 返回单个key: history。这意味着您的链(可能还有您的提示)期望输入名为:history的key。

通常可以通过memory类上的参数来控制此变量。例如,如果我们希望memory变量key为 chat_history,您可以执行以下操作:

memory = ConversationBufferMemory(memory_key="chat_history")
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")

结果:

    {'chat_history': "Human: hi!\nAI: whats up?"}

控制这些键的参数名称可能因memory类型而异,但重要的是要了解:
(1) 这是可控的,
(2) 如何控制它。

记忆是字符串还是消息列表

最常见的记忆类型之一涉及返回聊天消息列表。这些可以作为单个字符串返回,全部连接在一起(当它们在 LLM 中传递时有用)或 ChatMessages 列表(当传递到 ChatModels 中时有用)。

默认情况下,它们作为单个字符串返回。为了作为消息列表返回,您可以设置 return_messages=True

memory = ConversationBufferMemory(return_messages=True)
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")

结果:

    {'history': [HumanMessage(content='hi!', additional_kwargs={}, example=False),AIMessage(content='whats up?', additional_kwargs={}, example=False)]}

哪些key被保存到记忆中(What keys are saved to memory)

通常,链会接收或返回多个输入/输出键。在这些情况下,我们如何知道要将哪些键保存到聊天消息历史记录中?这通常可以通过记忆类型上的 input_keyoutput_key 参数来控制。

如果只有一个输入/输出键,则可以不用写 input_keyoutput_key 参数。但是,如果有多个输入/输出键,那么您必须指定要使用哪个输入/输出键的名称

端到端示例(End to end example)

最后,让我们看一下在链中使用它。我们将使用 LLMChain,并展示如何使用 LLMChatModel
使用LLM的例子:

from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemoryllm = OpenAI(temperature=0)
# 请注意,提示模板中存在“chat_history”
template = """你是一个很好的聊天机器人,正在与人类交谈。之前的对话:
{chat_history}新的人类问题: {question}
回复:"""
prompt = PromptTemplate.from_template(template)
# 请注意,我们需要对齐“memory_key”
memory = ConversationBufferMemory(memory_key="chat_history")
conversation = LLMChain(llm=llm,prompt=prompt,verbose=True,memory=memory
)

结果:

# 请注意,我们只是传入“question”变量 - “chat_history”由memory填充
conversation({"question": "hi"})

使用ChatModel

from langchain.chat_models import ChatOpenAI
from langchain.prompts import (ChatPromptTemplate,MessagesPlaceholder,SystemMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemoryllm = ChatOpenAI()
prompt = ChatPromptTemplate(messages=[SystemMessagePromptTemplate.from_template("你是一个很好的聊天机器人,正在与人类交谈。"),# 这里的“variable_name”必须与memory对齐MessagesPlaceholder(variable_name="chat_history"),HumanMessagePromptTemplate.from_template("{question}")]
)
# 请注意,我们将 `return_messages=True` 放入 MessagesPlaceholder
# 请注意,“chat_history”与 MessagesPlaceholder 名称一致。
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation = LLMChain(llm=llm,prompt=prompt,verbose=True,memory=memory
)

结果:

# 请注意,我们只是传入“question”变量 - “chat_history”由memory填充
conversation({"question": "hi"})

总结

本篇讲解 聊天的历史记录: 如何存储、如何查询。

这里是使用ConversationBufferMemory类来完成存储和查询的。
也就是关键下面这段代码:

# 构建一个memory
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
# 关联大模型
conversation = LLMChain(llm=llm,prompt=prompt,verbose=True,memory=memory
)
# 查询
# 请注意,我们只是传入“question”变量 - “chat_history”由memory填充
conversation({"question": "hi"})

ChatMessageHistory 公开两种方法和一个属性。
它公开的两个方法是 add_user_messageadd_ai_message,用于存储来自用户的消息相应的 AI 响应
它公开的属性是message属性,用于访问所有以前的消息。


参考地址:

https://python.langchain.com/docs/modules/memory.html

http://www.ds6.com.cn/news/106561.html

相关文章:

  • 请求做女朋友的网站源码北京seo主管
  • 建设银行网站打不开别的网站可以吗加盟培训机构
  • 佛山网站建设公司深圳市seo上词贵不贵
  • 网站建设的基本流程和步骤北京seo技术
  • 在哪个网站上找超市做生鲜优化服务是什么意思
  • 网站没备案做淘宝客深圳全网推广平台
  • ssh框架做的网站问题建立网站要多少钱一年
  • 哪个网站能接施工图来做广州的百度推广公司
  • 招聘网站开发源代码微信营销的特点
  • 网站制作团队国内免费建网站
  • 模板建站符合哪些工作需求?品牌宣传
  • 毕业设计网站代做靠谱吗北京网络推广公司排行
  • 南宁网站备案营销型网站的类型有哪些
  • 网站 外包方案最近在线直播免费观看
  • php自助建站程序短视频怎么赚钱
  • 项目从立项到结束的流程图西安seo搜推宝
  • 怎么看网站备案seo专员是什么职业
  • 阿里巴巴的网站二维码怎么做微信小程序怎么开通
  • 深圳市建设工程交易服务网宝安分中心新网站seo外包
  • 网站建设的付款方式网络营销措施有哪些
  • 山东公司网站推广优化合肥建站公司seo
  • 河北网站优化淘宝客怎么做推广
  • 网站改版业务产品网络推广方案
  • 公众号开发用什么工具兰州seo优化公司
  • html5 网站 代码百度推广一天费用200
  • 珠海网络公司网站建设知名做网站的公司
  • 余姚网站建设公司竞价托管 微竞价
  • 我要啦免费统计怎么做网站网络营销工程师
  • 做网站单页视频扬州seo博客
  • b2c网站建设费用企业seo关键词优化