当前位置: 首页 > news >正文

做拼图字的网站精准防恶意点击软件

做拼图字的网站,精准防恶意点击软件,做网站哪个行业比较有前景,网站不被收录的原因引言 随着深度学习的发展,图像分类已成为一项基础的技术,被广泛应用于各种场景之中。本文将介绍如何使用Flask框架和PyTorch库来构建一个简单的图像分类Web服务。通过这个服务,用户可以通过HTTP POST请求上传花朵图片,然后由后端…

引言

随着深度学习的发展,图像分类已成为一项基础的技术,被广泛应用于各种场景之中。本文将介绍如何使用Flask框架和PyTorch库来构建一个简单的图像分类Web服务。通过这个服务,用户可以通过HTTP POST请求上传花朵图片,然后由后端的深度学习模型对其进行分类,并返回分类结果。

环境搭建

首先,确保安装了以下Python库:

  • Flask:用于构建Web应用。
  • PyTorch:用于加载和运行深度学习模型。
  • torchvision:用于图像处理和加载预训练模型。
  • PIL:用于图像处理。

1. 初始化Flask应用

import io
import flask
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
from torchvision import transforms, models# 初始化Flask app
app = flask.Flask(__name__)# 创建一个新的Flask应用程序实例
# __name__参数通常被传递给FasK应用程序来定位应用程序的根路径,这样FlasK就可以知道在哪里找到模板、静态文件等。
# 总体来说app = flask.Flask(__name_)是FLaSK应用程序的起点。它初始化了一个新的FLaSK应用程序实例。为后续添加路由、配置等莫定

2. 加载模型

为了方便,我们将预训练好的ResNet18模型,保存在一个名为best.pth的检查点文件中。我们将加载这个模型,并准备好用于推理。

def load_model():"""Load the pre-trained model, you can use your model just as easily."""global model# 加载resnet18网络。ResNet(残差网络)是一种深度学习架构,设计用于解决深层神经网络中的梯度消失问题。model = models.resnet18()# num_ftrs 被赋值为模型全连接层(fc)的输入特征数量。num_ftrs = model.fc.in_featuresmodel.fc = nn.Sequential(nn.Linear(num_ftrs, 102))  # 类别数自己根据自己任务来# print(model)#导入最优模型#这行代码实际上是加载了一个预先训练好的模型的权重。# torch.load('best.pth') 会加载保存在 best.pth 文件中的模型检查点,# 通常这个检查点包含模型的状态字典(state dict),即模型所有层的权重和偏置。# model.load_state_dict(checkpoint['state_dict']) 会将加载的状态字典应用到我们的模型上,使模型具有之前训练时学到的参数。checkpoint = torch.load('best.pth')model.load_state_dict(checkpoint['state_dict'])# 将模型指定为测试格式model.eval()# 是否使用gpuif use_gpu:model.cuda()

3. 预处理图像

为了使图像符合模型的要求,我们需要对其进行预处理,包括调整大小、转换为张量以及标准化。

def prepare_image(image, target_size):# 检查输入图像的颜色模式是否为 RGB。如果不是,则将其转换为 RGB 模式。if image.mode != 'RGB':image = image.convert('RGB')# Resize the input image and preprocess it.(按照所使用的模型将输入图片的尺寸修改,并转为tensor)# 使用 transforms.Resize 对象将图像调整为目标尺寸 target_size。image = transforms.Resize(target_size)(image)# 使用 transforms.ToTensor() 将图像转换为 PyTorch 的 Tensor 类型。image = transforms.ToTensor()(image)# Convert to Torch, Tensor and normalize. mean与std# 对图像张量进行标准化处理。# 标准化的参数 [0.485, 0.456, 0.406] 是均值,代表每个颜色通道(红、绿、蓝)的平均值;# [0.229, 0.224, 0.225] 是标准差,代表每个颜色通道的标准差。image = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])(image)# Add batch_size axis 增加一个维度,用于按batch测试本次这里一次测试一张image = image[None]if use_gpu:image = image.cuda()  # return torch.tensor(imagereturn torch.tensor(image)

4. 设置路由和处理请求

使用Flask设置路由,并处理POST请求中的图像数据。

# 定义了一个名为 predict 的视图函数,并通过装饰器 @app.route 绑定了路由 /predict,允许该路由接收 HTTP POST 请求。
@app.route("/predict", methods=["POST"])
def predict():# 做一个标志,刚开始无图像传入时为false,传入图像时为truedata = {"success": False}if flask.request.method == 'POST':  # 检查请求的方法是否为 POSTif flask.request.files.get("image"):  # 判断是否为图像image = flask.request.files["image"].read()  # 将收到的图像进行读取,内容为二进制image = Image.open(io.BytesIO(image)) # 将这个二进制字符串转换为一个 PIL 图像对象。# 利用上面的预处理函数将读入的图像进行预处理image = prepare_image(image, target_size=(224, 224))# 将预处理后的图像输入到模型中,并得到一个未归一化的输出向量。# 使用 F.softmax 函数将这个输出向量转换为概率分布,这表示模型对于每个类别的预测概率。preds = F.softmax(model(image), dim=1)  # 得到各个类别的概率# cpu().data 确保结果在 CPU 上,并且不包含梯度信息。dim=1 表示沿着列方向查找最大值。results = torch.topk(preds.cpu().data, k=3, dim=1)  # 概率最大的前3个结果# torch.topk用于返回输入张量中每行最大的k个元素及其对应的索引# 将结果从 PyTorch 张量转换为 NumPy 数组,以便更容易地处理。results[0] 包含了概率值,而 results[1] 包含了类别索引。results = (results[0].cpu().numpy(), results[1].cpu().numpy())# 将data字典增加一个key,value,其中value为ist格式data['predictions'] = list()for probability, label in zip(results[0][0], results[1][0]):# Label name =idx2labellstr(label)]r = {"label": str(label), "probability": float(probability)}# 将预测结果添加至data字典data['predictions'].append(r)# Indicate that the reguest was a success.data["success"] = Truereturn flask.jsonify(data)  # 将最后结果以json格式文件传出,并返回给客户端。

5. 启动服务

最后,在主入口处启动Flask服务,并加载模型。

if __name__ == '__main__':print("Loading PyTorch model and Flask starting server ...")print("Please wait until server has fully started")load_model() #加载模型app.run(host='192.168.24.45', port=5012) #启动服务器,IP地址,端口

我们点击运行即可启动服务器,保持程序运行客户端即可通过ip地址和端口访问

接口客户端实现

在上一部分中,我们完成了基于Flask和PyTorch的图像分类Web服务的搭建。接下来,我们将继续探讨如何编写客户端代码来与该服务进行交互。通过编写一个简单的Python脚本来发送HTTP请求,我们可以测试我们的Web服务是否正常工作。

客户端代码实现

为了测试我们的图像分类服务,我们需要编写一段代码来模拟客户端的行为。这段代码将负责向服务端发送包含图像的POST请求,并接收返回的分类结果。

import requestsflask_url = 'http://192.168.24.45:5012/predict'# 定义一个名为 predict_result 的函数,该函数接受一个参数 image_path,表示要发送给 Flask 应用的图像文件的路径。
def predict_result(image_path):# 使用 open 函数以二进制模式 ('rb') 打开图像文件,并读取其内容。image = open(image_path, 'rb').read()# 将图像内容包装到一个字典 payload 中,键为 'image',值为图像的二进制内容。payload = {'image': image}# 使用 requests.post 方法发送一个 POST 请求到 Flask 应用,其中 files 参数用于上传文件。# files=payload 表示将 payload 字典中的内容作为文件上传。r = requests.post(flask_url, files=payload).json()  # .json() 方法将响应内容解析为 Python 字典形式,方便后续处理。if r['success']:  # 检查响应中的 success 键是否为 True。如果为 True,则意味着请求成功,并且会打印出预测结果。for (i, result) in enumerate(r['predictions']): print('{}.预测类别为{}:的概率:{}'.format(i + 1, result['label'], result['probability']))print('OK')  # 预测结果存储在 r['predictions'] 列表中,每个预测结果都是一个字典,包含类别标签 ("label") 和概率 ("probability")。else:  # 失败打印print('Request failed')
if __name__ == '__main__':predict_result('../data/6/image_07162.jpg')

预测图像

本次实验随机采用一张花的图片上传到到服务端


预测结果

客户端访问记录

当我们通过客户端访问服务端时,可通过后台查看访问记录

总结

通过以上步骤,我们构建了一个简单的图像分类Web服务。用户可以通过发送POST请求并将图像作为附件上传,然后服务端会对图像进行分类,并返回最有可能的三个类别及其概率。这种服务可以用于各种场合,如在线图像识别、产品分类等。

希望这篇文章能帮助你了解如何使用Flask和PyTorch快速搭建一个图像分类的服务,并激发你在实际项目中的应用。

http://www.ds6.com.cn/news/101713.html

相关文章:

  • 十六局集团门户网海外seo网站推广
  • wordpress 4.9.5 中文青岛招聘seo
  • 网站制作需要注意什么百度关键词分析
  • 肇庆 网站建设长沙优化排名
  • 平面设计零基础难学吗优化防疫措施
  • 洛宁网站建设去了外包简历就毁了吗
  • 为什么我网站打不开深圳关键词排名seo
  • 网站需要每个城市做推广吗seo网站优化方案
  • 河北最新发布最新上海网站优化
  • 网站后缀cc类似凡科建站的平台
  • 坪山网站建设信息合肥seo搜索优化
  • 静态网站托管云资源软文发布平台
  • 外贸先做网站再开公司网络营销策划方案
  • 如何帮公司做网站bt种子bt天堂
  • 政府网站集约化建设思路关键词查询工具软件
  • 北京b2b网站开发如何对网站进行推广
  • 武汉做网站的企业线上销售怎么做
  • wordpress 关闭文章修订seo博客是什么意思
  • php网站搬家教程南召seo快速排名价格
  • 电商网站的对比谷歌浏览器手机版下载
  • 购物网站制作样例2023b站免费推广入口
  • 北京牛鼻子网站建设公司seo服务指什么意思
  • 网站开发前端和后端技术中关村标准化协会
  • 新网站建设的流程怎么找需要推广的商家
  • 自学网站开发多少时间佛山市seo推广联系方式
  • lamp网站建设百度搜索排名靠前
  • 什么网站可以接设计方案怎么利用互联网推广
  • 吉林省现代交通建设有限公司官网站免费网站在线观看人数在哪直播
  • 上海地产网站建设百度浏览器电脑版
  • wordpress关闭订阅系统优化的方法