当前位置: 首页 > news >正文

做网站一般哪里找乔拓云智能建站

做网站一般哪里找,乔拓云智能建站,广州做网站公司,南通网站备案1.反向传播算法(BP)的概念及简单推导 反向传播(Backpropagation,BP)算法是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见算法。BP算法对网络中所有权重计算…

1.反向传播算法(BP)的概念及简单推导

反向传播(Backpropagation,BP)算法是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见算法。BP算法对网络中所有权重计算损失函数的梯度,并将梯度反馈给最优化方法,用来更新权值以最小化损失函数。该算法会先按前向传播方式计算(并缓存)每个节点的输出值,然后再按反向传播遍历图的方式计算损失函数值相对于每个参数的偏导数

接下来我们以全连接层,使用sigmoid激活函数,Softmax+MSE作为损失函数的神经网络为例,推导BP算法逻辑。由于篇幅限制,这里只进行简单推导,后续Rocky将专门写一篇PB算法完整推导流程,大家敬请期待。

首先,我们看看sigmoid激活函数的表达式及其导数:

s i g m o i d 表达式: σ ( x ) = 1 1 + e − x sigmoid表达式:\sigma(x) = \frac{1}{1+e^{-x}} sigmoid表达式:σ(x)=1+ex1
s i g m o i d 导数: d d x σ ( x ) = σ ( x ) − σ ( x ) 2 = σ ( 1 − σ ) sigmoid导数:\frac{d}{dx}\sigma(x) = \sigma(x) - \sigma(x)^2 = \sigma(1- \sigma) sigmoid导数:dxdσ(x)=σ(x)σ(x)2=σ(1σ)

可以看到sigmoid激活函数的导数最终可以表达为输出值的简单运算。

我们再看MSE损失函数的表达式及其导数:

M S E 损失函数的表达式: L = 1 2 ∑ k = 1 K ( y k − o k ) 2 MSE损失函数的表达式:L = \frac{1}{2}\sum^{K}_{k=1}(y_k - o_k)^2 MSE损失函数的表达式:L=21k=1K(ykok)2

其中 y k y_k yk 代表ground truth(gt)值, o k o_k ok 代表网络输出值。

M S E 损失函数的偏导: ∂ L ∂ o i = ( o i − y i ) MSE损失函数的偏导:\frac{\partial L}{\partial o_i} = (o_i - y_i) MSE损失函数的偏导:oiL=(oiyi)

由于偏导数中单且仅当 k = i k = i k=i 时才会起作用,故进行了简化。

接下来我们看看全连接层输出的梯度:

M S E 损失函数的表达式: L = 1 2 ∑ i = 1 K ( o i 1 − t i ) 2 MSE损失函数的表达式:L = \frac{1}{2}\sum^{K}_{i=1}(o_i^1 - t_i)^2 MSE损失函数的表达式:L=21i=1K(oi1ti)2

M S E 损失函数的偏导: ∂ L ∂ w j k = ( o k − t k ) o k ( 1 − o k ) x j MSE损失函数的偏导:\frac{\partial L}{\partial w_{jk}} = (o_k - t_k)o_k(1-o_k)x_j MSE损失函数的偏导:wjkL=(oktk)ok(1ok)xj

我们用 δ k = ( o k − t k ) o k ( 1 − o k ) \delta_k = (o_k - t_k)o_k(1-o_k) δk=(oktk)ok(1ok) ,则能再次简化:

M S E 损失函数的偏导: d L d w j k = δ k x j MSE损失函数的偏导:\frac{dL}{dw_{jk}} = \delta_kx_j MSE损失函数的偏导:dwjkdL=δkxj

最后,我们看看那PB算法中每一层的偏导数:

输出层:
∂ L ∂ w j k = δ k K o j \frac{\partial L}{\partial w_{jk}} = \delta_k^K o_j wjkL=δkKoj
δ k K = ( o k − t k ) o k ( 1 − o k ) \delta_k^K = (o_k - t_k)o_k(1-o_k) δkK=(oktk)ok(1ok)

倒数第二层:
∂ L ∂ w i j = δ j J o i \frac{\partial L}{\partial w_{ij}} = \delta_j^J o_i wijL=δjJoi
δ j J = o j ( 1 − o j ) ∑ k δ k K w j k \delta_j^J = o_j(1 - o_j) \sum_{k}\delta_k^Kw_{jk} δjJ=oj(1oj)kδkKwjk

倒数第三层:
∂ L ∂ w n i = δ i I o n \frac{\partial L}{\partial w_{ni}} = \delta_i^I o_n wniL=δiIon
δ i I = o i ( 1 − o i ) ∑ j δ j J w i j \delta_i^I = o_i(1 - o_i) \sum_{j}\delta_j^Jw_{ij} δiI=oi(1oi)jδjJwij

像这样依次往回推导,再通过梯度下降算法迭代优化网络参数,即可走完PB算法逻辑。

2.滑动平均的相关概念

滑动平均(exponential moving average),或者叫做指数加权平均(exponentially weighted moving avergae),可以用来估计变量的局部均值,使得变量的更新与一段时间内的历史取值有关

变量 v v v t t t 时刻记为 v t v_{t} vt θ t \theta_{t} θt 为变量 v v v t t t 时刻训练后的取值,当不使用滑动平均模型时 v t = θ t v_{t} = \theta_{t} vt=θt ,在使用滑动平均模型后, v t v_{t} vt 的更新公式如下:

上式中, β ϵ [ 0 , 1 ) \beta\epsilon[0,1) βϵ[0,1) β = 0 \beta = 0 β=0 相当于没有使用滑动平均。

t t t 时刻变量 v v v 的滑动平均值大致等于过去 1 / ( 1 − β ) 1/(1-\beta) 1/(1β) 个时刻 θ \theta θ 值的平均。并使用bias correction将 v t v_{t} vt 除以 ( 1 − β t ) (1 - \beta^{t}) (1βt) 修正对均值的估计。

加入Bias correction后, v t v_{t} vt v b i a s e d t v_{biased_{t}} vbiasedt 的更新公式如下:

t t t 越大, 1 − β t 1 - \beta^{t} 1βt 越接近1,则公式(1)和(2)得到的结果( v t v_{t} vt v b i a s e d 1 v_{biased_{1}} vbiased1 )将越来越接近。

β \beta β 越大时,滑动平均得到的值越和 θ \theta θ 的历史值相关。如果 β = 0.9 \beta = 0.9 β=0.9 ,则大致等于过去10个 θ \theta θ 值的平均;如果 β = 0.99 \beta = 0.99 β=0.99 ,则大致等于过去100个 θ \theta θ 值的平均。

下图代表不同方式计算权重的结果:

如上图所示,滑动平均可以看作是变量的过去一段时间取值的均值,相比对变量直接赋值而言,滑动平均得到的值在图像上更加平缓光滑,抖动性更小,不会因为某种次的异常取值而使得滑动平均值波动很大

滑动平均的优势: 占用内存少,不需要保存过去10个或者100个历史 θ \theta θ 值,就能够估计其均值。滑动平均虽然不如将历史值全保存下来计算均值准确,但后者占用更多内存,并且计算成本更高。

为什么滑动平均在测试过程中被使用?

滑动平均可以使模型在测试数据上更鲁棒(robust)

采用随机梯度下降算法训练神经网络时,使用滑动平均在很多应用中都可以在一定程度上提高最终模型在测试数据上的表现。

训练中对神经网络的权重 w e i g h t s weights weights 使用滑动平均,之后在测试过程中使用滑动平均后的 w e i g h t s weights weights 作为测试时的权重,这样在测试数据上效果更好。因为滑动平均后的 w e i g h t s weights weights 的更新更加平滑,对于随机梯度下降而言,更平滑的更新说明不会偏离最优点很远。比如假设decay=0.999,一个更直观的理解,在最后的1000次训练过程中,模型早已经训练完成,正处于抖动阶段,而滑动平均相当于将最后的1000次抖动进行了平均,这样得到的权重会更加鲁棒。

http://www.ds6.com.cn/news/99499.html

相关文章:

  • 怎么做网站程序下载浏览器
  • 网站怎么做备案号超链接搜索引擎营销是什么意思
  • wordpress主题动态百度seo关键词优化方案
  • 做豆腐交流经验的网站站长工具黄
  • 做qq群排名的网站是否违规网络口碑推广公司
  • 做诚信通谁给做网站加强网络暴力治理
  • 广州哪家做网站还可以如何免费注册网站
  • 西安哪里做网站最大seo推广怎么做
  • 网站建设属于什么费用百度云手机登录入口
  • 做网站的难点是什么中国seo网站
  • 医疗类网站哪家做的好厦门seo培训
  • 做简单网站需要学什么百度搜图
  • 做网站的人还能做什么社群营销的方法和技巧
  • wordpress自动播放视频广州网站seo公司
  • 郑志平爱站网创始人北京网站制作400办理多少钱
  • wordpress打印插件关键词优化的作用
  • 做营销网站制作怎么办网站平台
  • 专注河南网站建设软文营销怎么写
  • 河南官网网站建设报价网络推广优化工具
  • aspx网站搭建教程站内营销推广方式
  • 做电影网站用什么软件叫什么名字企业网络推广计划
  • 做的网站里面显示乱码怎么解决有什么功能
  • 代理网站备案收钱百度目前的推广方法
  • 网站宣传的方法有哪些app拉新放单平台
  • 做网站要会写什么找培训机构的app
  • 常德建设工程信息网株洲seo优化推荐
  • 网上做彩票的网站是真的么搜索优化整站优化
  • 有用建站宝盒做网站的吗关键词优化排名软件推荐
  • java图书管理网站建设9个成功的市场营销案例
  • 青海海东平安县建设局网站微信营销软件免费版