asp课程设计企业网站设计,市场监督管理局官网,做网站那些好,网站建设公司的服务器文章目录 导入数据集访问数据集 ndata edata节点信息边信息构造模型并训练构造dgl graph并查看图信息构造特征获取子图保存与加载模型自定义GNN moduleBuilt-in message and reduce function节点和边apply APIUser Defined FunctionLink PredictionGraph Classification(undone…
文章目录
导入数据集
访问数据集 ndata edata
节点信息
边信息
构造模型并训练
构造dgl graph并查看图信息
构造特征
获取子图
保存与加载模型
自定义GNN module
Built-in message and reduce function
节点和边apply API
User Defined Function
Link Prediction
Graph Classification(undone)
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
import scipy as sp
import sklearn as sk
import time
import gc%matplotlib inline
%config InlineBackend.figure_format ='retina'import warnings
warnings.filterwarnings("ignore")
plt.rcParams['figure.figsize']=(10.0,8.0)
pd.set_option('display.max_columns',10)
pd.set_option('display.max_rows',None)
pd.set_option('display.min_rows',14)
pd.set_option('display.max_colwidth',100)# pd.reset_option('display.max_columns')
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as Ffrom importlib importreload
Using backend: pytorchLoading from cache failed, re-processing.
Finished data loading and preprocessing.NumNodes: 2708NumEdges: 10556NumFeats: 1433NumClasses: 7NumTrainingSamples: 140NumValidationSamples: 500NumTestSamples: 1000
Done saving data into cached files.
访问数据集 ndata edata
# 数据集名称
dataSet.name
'cora_v2'
# 查看有哪些图
dataSet.graph
<networkx.classes.digraph.DiGraph at 0x7fdf0458e290>
'\ndgl.graph params:\n\ndata: (src nodes id, dest nodes id) 一一对应\nnum_nodes: 节点个数\n\n构造有向图,边直接由起始节点和终止节点决定,边的id由定义顺序决定\n'
# 查看边
graph.edges()
(tensor([0, 0, 0]), tensor([1, 2, 3]))
graph.num_edges()
3
# 给定起始和终止节点查看边id
graph.edge_id(2,0)
---------------------------------------------------------------------------DGLError Traceback (most recent call last)<ipython-input-23-71bec222622a> in <module>1 # 给定起始和终止节点查看边id
----> 2 graph.edge_id(2, 0)~/anaconda3/envs/DeepLearning/lib/python3.7/site-packages/dgl/heterograph.py in edge_id(self, u, v, force_multi, return_uv, etype)2713 dgl_warning("DGLGraph.edge_id is deprecated. Please use DGLGraph.edge_ids.")2714 return self.edge_ids(u, v, force_multi=force_multi,
-> 2715 return_uv=return_uv, etype=etype)2716 2717 def edge_ids(self, u, v, force_multi=None, return_uv=False, etype=None):~/anaconda3/envs/DeepLearning/lib/python3.7/site-packages/dgl/heterograph.py in edge_ids(self, u, v, force_multi, return_uv, etype)2835 raise DGLError("Error: (%d, %d) does not form a valid edge." % (2836 F.as_scalar(F.gather_row(u, idx)),
-> 2837 F.as_scalar(F.gather_row(v, idx))))2838 return F.as_scalar(eid) if is_int else eid2839 DGLError: Error: (2, 0) does not form a valid edge.