当前位置: 首页 > news >正文

网站建设绵阳关键词优化推广

网站建设绵阳,关键词优化推广,Wordpress向导,如何做一个电商1. Autoencoder 简介 Autoencoder是一种用于学习数据高效压缩表示的人工神经网络。它由两个主要部分组成: Encoder 编码器将输入数据映射到一个更小的、低维空间中的压缩表示,这个空间通常称为latent space或bottleneck。 这一过程可以看作是数据压缩,去除冗余信息,仅保留…

1. Autoencoder 简介

Autoencoder是一种用于学习数据高效压缩表示的人工神经网络。它由两个主要部分组成:

Encoder

  • 编码器将输入数据映射到一个更小的、低维空间中的压缩表示,这个空间通常称为latent space或bottleneck。

  • 这一过程可以看作是数据压缩,去除冗余信息,仅保留最重要的特征。

Decoder

  • 解码器从潜在表示中重构原始输入数据。

  • 理想情况下,解码器的输出应尽可能接近原始输入。

Schema of a autoencoder (source: https://en.wikipedia.org/wiki/Autoencoder)

2. Autoencoder的种类

2.1 Vanilla Autoencoder

Vanilla Autoencoder (source: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/auto_v8.pdf)

vanilla autoencoder是最简单形式的自动编码器,旨在通过瓶颈层尽可能准确地重构输入数据。它是更高级自动编码器变体的基础。

Vanilla autoencoder的训练目标是最小化输入 x 和输出 x^\prime之间的重构损失. 常见的损失函数包括:

均方误差(MSE):适用于连续数据。

\text{MSE Loss}= \frac{1}{n} \sum_{i=1}^{n} (x_i - x_i')^2 \\

二元交叉熵损失(Binary Cross-Entropy Loss): 适用于二元数据。

\text{BCE Loss} = - \frac{1}{n} \sum_{i=1}^{n} \left[ x_i \log(x_i') + (1 - x_i) \log(1 - x_i') \right] \\

2.2 Denoising Autoencoder

Denoising Autoencoder (source: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/auto_v8.pdf)

Denoising autoencoder (DAE) 是一种自动编码器变体,它专门训练从受损(有噪声)的输入中重构干净的输入数据。这使其成为学习有意义特征和执行数据去噪任务的强大工具。

原始输入数据通过添加噪声或引入干扰被人为破坏,生成带噪输入。常见的破坏类型包括:

  • 高斯噪声:在输入数据中添加随机噪声。

  • 椒盐噪声:随机翻转图像中的像素值。

  • 遮掩噪声:将输入的随机部分设为零。

  • 随机失活噪声:随机丢弃部分特征。

与基础型自动编码器类似,常用的损失函数包括均方误差(MSE)和二元交叉熵损失(Binary Cross-Entropy Loss)。

2.3 变分自动编码器 Variational Autoencoder (VAE)

Variationaler Autoencoder (source: https://www.geeksforgeeks.org/variational-autoencoders/)

变分自动编码器(VAE)是一种用于学习数据概率表示的自动编码器。与标准自动编码器将数据编码为固定的潜在表示不同,VAE 将数据编码为潜在空间中的一个分布(通常是高斯分布)。这使得 VAE 在生成任务中尤其有用。

VAE 的三个主要组成部分:

编码器(Encoder)

  • 编码器将输入数据 x 映射到潜在分布 q(z|x) .。

  • 对于每个潜在变量,编码器输出两个参数:

    • 均值(\mu

    • 标准差(\sigma

潜在空间(Latent Space)

  • 表示输入数据的压缩概率分布。

  • 潜在空间中的变量 z 通过以下公式采样:\\ z = \mu + \sigma \cdot \epsilon \\ 其中 \epsilon \sim \mathcal{N}(0, I)。这种操作称为重参数化技巧(reparameterization trick),它允许通过随机采样过程进行反向传播。

解码器(Decoder)

  • 解码器将潜在变量 z 映射回原始数据空间 p(x|z)

  • 它尝试从潜在表示中重构输入数据 x^\prime

2.3.1 损失函数

VAE 的损失函数由两部分组成:

重构损失 \mathcal{L}_{\text{recon}}

  • 它衡量重构数据与原始数据的匹配程度。

  • 我们通常使用二元交叉熵或均方误差。

KL 散度 \mathcal{L}_{\text{KL}}

  • 它使潜在空间分布 q(z|x) 接近先验分布 p(z) , 通常是标准高斯分布 \mathcal{N}(0, I) .

  • 定义为: \mathcal{L}_{\text{KL}} = D_{\text{KL}}(q(z|x) \| p(z)) \\ 该项正则化潜在空间,确保插值平滑且具有意义。

总损失公式为:

\mathcal{L} = \mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{KL}}\\

2.3.2 证据下界 Evidence Lower Bound (ELBO)

在变分自动编码器(VAE)中,核心目标是最大化输入数据的边际似然 p(x) ,即尽可能解释数据。为此,一个重要的数学工具是证据下界(ELBO)。

2.3.2.1 什么是 ELBO?

ELBO 是通过变分推断近似数据边际似然

http://www.ds6.com.cn/news/96604.html

相关文章:

  • 有没有做网页接单的网站爱站网官网
  • 威海外贸网站建设电话河南疫情最新消息
  • 咸阳佰亿网络工程有限公司免费发布网站seo外链
  • 网网站开发设计合肥今日头条最新消息
  • centos6.6做网站百度在线客服人工服务
  • 公司做网站流程win10必做的优化
  • 宁波seo整站优化软件湖南专业关键词优化
  • 自己做的简单网站下载百度知道网页入口
  • 最大的购物平台佛山百度提升优化
  • 毕业设计做的网站代码会查重百度sem竞价托管公司
  • 网上做夫妻的网站软文广告经典案例300大全
  • 有哪些做西点及烘焙的网站优化电脑的软件有哪些
  • 企业网站推广品牌产品seo怎么优化
  • 网站域名证书域名购买平台
  • 关于建设网站安全性合同湖南网站seo地址
  • 无锡网站建设培训学校弹窗广告最多的网站
  • 免费制作相册视频网站模板百度官网网站登录
  • 有关学风建设网站微信营销软件免费版
  • 教人做素食的网站恶意点击广告软件
  • 蒙阴做网站深圳网络推广解决方案
  • 湖南益阳网站建设淘宝客推广
  • 易加网站建设方案怎样自己做网站
  • 做软文的网站软文推广平台
  • 三方物流网站建设seo外链资源
  • 邢台网站建设服务百度大数据分析
  • wordpress d8主题seo网站管理招聘
  • 微信开发者平台小程序seoshanghai net
  • PS的网站分析影响网站排名的因素
  • 聊城做手机网站建设什么是网络营销含义
  • 品牌网站建设流程图自动点击关键词软件