当前位置: 首页 > news >正文

网站 建设ppt模板永久免费的电销外呼系统

网站 建设ppt模板,永久免费的电销外呼系统,wordpress友情链接排序,深圳网站建设工作室VGG16是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络模型。 VGGNet 探索了卷积神经网络的深度与其性能之间的关系,成功地构筑了 16~19 层深的卷积神经网络,同时拓展性又很强,迁移到其它图片…

        VGG16是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络模型。

        VGGNet 探索了卷积神经网络的深度与其性能之间的关系,成功地构筑了 16~19 层深的卷积神经网络,同时拓展性又很强,迁移到其它图片数据上的泛化性也非常好。到目前为止,VGG 仍然被用来提取图像特征。

        对VGGNet的介绍,这篇文章很优秀:大话CNN经典模型:VGGNet - OSCHINA - 中文开源技术交流社区

        部分摘抄:

        VGGNet的网络结构:
        下图是来自论文《Very Deep Convolutional Networks for Large-Scale Image Recognition》(基于甚深层卷积网络的大规模图像识别)的 VGG 网络结构,正是在这篇论文中提出了 VGG,如下图:

        在这篇论文中分别使用了 A、A-LRN、B、C、D、E 这 6 种网络结构进行测试,这 6 种网络结构相似,都是由 5 层卷积层、3 层全连接层组成,其中区别在于每个卷积层的子层数量不同,从 A 至 E 依次增加(子层数量从 1 到 4),总的网络深度从 11 层到 19 层(添加的层以粗体显示),表格中的卷积层参数表示为 “conv〈感受野大小〉- 通道数〉”,例如 con3-128,表示使用 3x3 的卷积核,通道数为 128。为了简洁起见,在表格中不显示 ReLU 激活功能。
其中,网络结构 D 就是著名的 VGG16,网络结构 E 就是著名的 VGG19。

        以网络结构 D(VGG16)为例,介绍其处理过程如下,请对比上面的表格和下方这张图,留意图中的数字变化,有助于理解 VGG16 的处理过程:

1 、输入 224x224x3 的图片,经 64 个 3x3 的卷积核作两次卷积 + ReLU,卷积后的尺寸变为 224x224x64
2、作 max pooling(最大化池化),池化单元尺寸为 2x2(效果为图像尺寸减半),池化后的尺寸变为 112x112x64
3、经 128 个 3x3 的卷积核作两次卷积 + ReLU,尺寸变为 112x112x128
4、作 2x2 的 max pooling 池化,尺寸变为 56x56x128
5、经 256 个 3x3 的卷积核作三次卷积 + ReLU,尺寸变为 56x56x256
6、作 2x2 的 max pooling 池化,尺寸变为 28x28x256
7、经 512 个 3x3 的卷积核作三次卷积 + ReLU,尺寸变为 28x28x512
8、作 2x2 的 max pooling 池化,尺寸变为 14x14x512
9、经 512 个 3x3 的卷积核作三次卷积 + ReLU,尺寸变为 14x14x512
10、作 2x2 的 max pooling 池化,尺寸变为 7x7x512
11、与两层 1x1x4096,一层 1x1x1000 进行全连接 + ReLU(共三层)
12、通过 softmax 输出 1000 个预测结果

其简化图如下(以 VGG16 为例): 

代码实现:新建vggNet.py

import torch
import torch.nn as nn
import torch.nn.functional as Fclass VGGbase(nn.Module):def __init__(self, num_classes=10):super(VGGbase, self).__init__()self.conv1 = nn.Sequential(  # 定义第1个卷积层# Sequential 是一个容器,它可以包含一系列的神经网络层(layers),并按顺序执行它们。具体来说,# nn.Sequential( 允许您将多个层定义为一个整体,这个整体可以被视为一个单独的层。# 当您向神经网络传递数据时,数据会依次通过 Sequential 中定义的每一层。# 这种方式简化了网络结构的定义和理解,尤其是在构建较为复杂的网络时。nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),  # 输入通道为3,输出通道为64,卷积核大小为3x3,步长为1,填充为1nn.BatchNorm2d(64),  # 批量归一化# nn.BatchNorm2d 表示对二维输入进行批量归一化,参数 64 通常代表输入特征的通道数。批量归一化的作用是在神经网络训练过程中,对每一批次的数据进行归一化处理,# 使得数据的分布更加稳定,有助于加速训练过程、提高模型的泛化能力。nn.ReLU()  # 激活函数)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # 最大池化,池化核大小为2x2,步长为2# 经过第一层卷积后,图像的尺寸为 16x16,通道数为64self.conv2_1 = nn.Sequential(  # 定义第2个卷积层的第一次卷积nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),  # 输入通道为64,输出通道为128,卷积核大小为3x3,步长为1,填充为1nn.BatchNorm2d(128),  # 批量归一化nn.ReLU()  # 激活函数)self.conv2_2 = nn.Sequential(  # 定义第2个卷积层的第二次卷积nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),  # 输入通道为64,输出通道为128,卷积核大小为3x3,步长为1,填充为1nn.BatchNorm2d(128),  # 批量归一化nn.ReLU()  # 激活函数)self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)  # 最大池化,池化核大小为2x2,步长为2# 经过第二层卷积后,图像的尺寸为 8x8,通道数为128self.conv3_1 = nn.Sequential(  # 定义第3个卷积层的第一次卷积nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),  # 输入通道为64,输出通道为128,卷积核大小为3x3,步长为1,填充为1nn.BatchNorm2d(256),  # 批量归一化nn.ReLU()  # 激活函数)self.conv3_2 = nn.Sequential(  # 定义第3个卷积层的第二次卷积nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(256),  # 批量归一化nn.ReLU()  # 激活函数)self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)# 经过第三层卷积后,图像的尺寸为 4x4,通道数为256self.conv4_1 = nn.Sequential(  # 定义第4个卷积层的第一次卷积nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(512),  # 批量归一化nn.ReLU()  # 激活函数)self.conv4_2 = nn.Sequential(  # 定义第4个卷积层的第二次卷积nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(512),  # 批量归一化nn.ReLU()  # 激活函数)self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)  # 最大池化,池化核大小为2x2,步长为2# 经过第四层卷积后,图像的尺寸为 2x2,通道数为512self.fc = nn.Linear(512 * 4, num_classes)  # 全连接层,输入为512*4,输出为10def forward(self, x):   # 定义前向传播过程batch_size = x.size(0)  # 获取输入的batch_sizex = self.conv1(x)  # 第1个卷积层x = self.pool1(x)  # 第1个池化层x = self.conv2_1(x)  # 第2个卷积层x = self.conv2_2(x)  # 第2个卷积层x = self.pool2(x)  # 第2个池化层x = self.conv3_1(x)  # 第3个卷积层x = self.conv3_2(x)  # 第3个卷积层x = self.pool3(x)  # 第3个池化层x = self.conv4_1(x)  # 第4个卷积层x = self.conv4_2(x)  # 第4个卷积层x = self.pool4(x)  # 第4个池化层x = x.view(batch_size, -1)  # 将图片展开成一行,-1表示自动计算这一维的大小x = self.fc(x)   # 全连接层output = F.log_softmax(x, dim=1)  # 对输出进行log_softmax处理return outputdef VGGNet():  # 定义网络结构的应用函数return VGGbase()

http://www.ds6.com.cn/news/96265.html

相关文章:

  • php企业网站的毕业论文营销型网站制作公司
  • 高端营销网站长沙做搜索引擎的公司
  • 免费域名qq空间申请培训行业seo整站优化
  • 苏州公司技术支持 苏州网站建设罗湖区seo排名
  • 摄影网站的需求分析西安竞价托管代运营
  • 网站是一个链接的页面集合seo网站技术培训
  • 织梦网站模板怎么做优化排名工具
  • 聚划算网站建设分析成人用品网店进货渠道
  • 湖北优化网站建设百度浏览器网址
  • 潍坊网站建设客服自己怎么做一个网页
  • 如何用wordpress做网站seo优化师就业前景
  • 礼品网站如何做百度开户返点
  • 行业网站制作做网络推广有哪些平台
  • web网站开发实训总结市场监督管理局
  • o2o网站建设报价前端seo优化
  • 网站开发咨询网站策划书
  • 熟悉网站空间 域名等相关知识西安seo技术培训班
  • 布吉网站建设技术托管站长工具外链查询
  • 网站建设经费搜索大全浏览器
  • 手机商城网站方案整合营销沟通
  • 软件开发可以自学吗如何seo网站推广
  • 个人网站如何发布淘宝seo排名优化的方法
  • 个人备案 做网站学seo优化
  • 宁波小型建网站公司百度关键词工具在哪里
  • 动漫设计就业率高吗天津放心站内优化seo
  • 品牌建设规划制定及实施情况seo网站优化做什么
  • 盐山县做网站百度一下你就知道搜索
  • 网站文章收录百度小说app
  • 如何做服装微商城网站专业搜索引擎seo技术公司
  • 旅游电商网站排名百度seo官方网站