当前位置: 首页 > news >正文

龙岩kk网手机版杭州网络优化公司排名

龙岩kk网手机版,杭州网络优化公司排名,dedecms手机网站模板安装教程,大庆企业网站建设公司一. 初识算法 1.1 什么是算法? 在数学和计算机科学领域,算法是一系列有限的严谨指令,通常用于解决一类特定问题或执行计算 不正式的说,算法就是任何定义优良的计算过程:接收一些值作为输入,在有限的时间…

一. 初识算法

1.1 什么是算法?

在数学和计算机科学领域,算法是一系列有限的严谨指令,通常用于解决一类特定问题或执行计算

不正式的说,算法就是任何定义优良的计算过程:接收一些值作为输入,在有限的时间内,产生一些值作为输出。

1.2 什么是数据结构?

在计算机科学领域,数据结构是一种数据组织、管理和存储格式,通常被选择用来高效访问数据

数据结构是一种存储和组织数据的方式,旨在便于访问和修改

1.3 衡量算法好坏

一般从以下维度来评估算法的优劣:正确性、可读性、健壮性(对不合理输入的反应能力和处理能力)。
时间复杂度(time complexity):估算程序指令的执行次数(执行时间)。
空间复杂度(space complexity):估算所需占用的存储空间。

1.3.1 时间复杂度

常见的时间复杂度从快到慢:

常数复杂度                                 O(1)

对数复杂度                                 O(logn)

线性时间复杂度                          O(n)

线性对数复杂度                          O(nlogn)

平方                                            O(n^{2})

立方                                            O(n^{3})

指数                                            O(2^{n})

阶乘                                            O(n!)

1.3.2 空间复杂度

空间复杂度就是算法需要多少内存,占用了多少空间

常用的空间复杂度有O(1)、O(n)、O(n^{2})

二、二分查找

二分查找算法也称折半查找,是一种非常高效的工作于有序数组的查找算法。

2.1 二分查找基础版

	/*** @description: 二分查找基础版* @author: 憨憨浩浩* @date: 2023/12/11 21:54* @param: [a, target]* @return: int**/public static int binarySearchBasic(int[] a, int target) {// 定义左侧指针int i = 0;// 定义右侧指针int j = a.length - 1;// 当 i > j 时退出循环while (i <= j){// 定义中间指针int m = (i + j) / 2;if (a[m] > target){     // 目标值在左边j = m - 1;}else if (a[m] < target){       // 目标值在右边i = m + 1;}else {     // 找到目标值返回对应索引return m;}}return -1;      // 找不到目标值返回-1}

(i + j) / 2 有没有问题?

有问题,当数组长度足够长是会发生问题;

	@Testpublic void Test01(){int i = Integer.MAX_VALUE / 2;int j = Integer.MAX_VALUE;int m = (i + j) / 2;System.out.println(m);		// -536870913}

解决方案:

	@Testpublic void Test02(){int i = Integer.MAX_VALUE / 2;int j = Integer.MAX_VALUE;int m = (i + j) >>> 2;System.out.println(m);		// 805306367}

2.2 二分查找改变版

另一种写法

	/*** @description: 二分查找改变版* @author: 憨憨浩浩* @date: 2023/12/11 22:10* @param: [a, target]* @return: int**/public static int binarySearchAlternative(int[] a,int target){// 定义左侧指针int i = 0;// 定义右侧指针int j = a.length;// 当 i = j 时退出循环while (i < j){// 定义中间指针int m = (i + j) /2;if (a[m] > target){     // 目标值在左边j = m;} else if (a[m] < target) {     // 目标值在右边i = m + 1;}else {     // 找到目标值返回对应索引return m;}}return -1;      // 找不到目标值返回-1}

2.3 二分查找性能

2.4 二分查找平衡版

	/*** @description: 二分查找平衡版* @author: 憨憨浩浩* @date: 2023/12/13 13:46* @param: [a, target]* @return: int**/public static int binarySearchBalance(int[] a,int target){// 定义左侧指针int i = 0;// 定义右侧指针int j = a.length;// 当 i + 1 > j 时退出循环while (1 < j - i) {// 定义中间指针int m = (i + j) >>> 1;if (target < a[m]) {     // 目标值在左边j = m;} else {i = m;}}// 查到返回i,查不到返回-1return (a[i] == target) ? i : -1;}

2.5 二分查找 Java 版

Java8源码:

public static int binarySearch(int[] a, int key) {return binarySearch0(a, 0, a.length, key);}private static int binarySearch0(int[] a, int fromIndex, int toIndex, int key) {int low = fromIndex;int high = toIndex - 1;while (low <= high) {int mid = (low + high) >>> 1;int midVal = a[mid];if (midVal < key)low = mid + 1;else if (midVal > key)high = mid - 1;elsereturn mid; // key found}return -(low + 1);  // key not found.}

2.6 Leftmost 与 Rightmost

	/*** @description: 二分查找返回左侧的索引值* @author: 憨憨浩浩* @date: 2023/12/15 20:21* @param: [a, target]* @return: int**/public static int binarySearchLeftmost1(int[] a,int target){int i = 0, j = a.length - 1;int candidate = -1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {j = m - 1;} else if (a[m] < target) {i = m + 1;} else {candidate = m; // 记录候选位置j = m - 1;     // 继续向左}}return candidate;}

如果希望返回的是最右侧元素

	/*** @description: 二分查找返回最右侧值的索引* @author: 憨憨浩浩* @date: 2023/12/15 20:23* @param: [a, target]* @return: int**/public static int binarySearchRightmost1(int[] a,int target){int i = 0, j = a.length - 1;int candidate = -1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {j = m - 1;} else if (a[m] < target) {i = m + 1;} else {candidate = m; // 记录候选位置i = m + 1;	   // 继续向右}}return candidate;}

应用

对于 Leftmost 与 Rightmost,可以返回一个比 -1 更有用的值

Leftmost 改为

public static int binarySearchLeftmost(int[] a, int target) {int i = 0, j = a.length - 1;while (i <= j) {int m = (i + j) >>> 1;if (target <= a[m]) {j = m - 1;} else {i = m + 1;}}return i; 
}

Rightmost 改为

public static int binarySearchRightmost(int[] a, int target) {int i = 0, j = a.length - 1;while (i <= j) {int m = (i + j) >>> 1;if (target < a[m]) {j = m - 1;} else {i = m + 1;}}return i - 1;
}

大于等于中间值,都要向右找

几个名词

 

http://www.ds6.com.cn/news/95923.html

相关文章:

  • 城乡住房规划建设局网站洛阳seo外包公司费用
  • 响应式网站建设推广太原seo建站
  • 在线直播系统开发网站为什么要做seo
  • 订购网站模板免费访问国外网站的app
  • 做什么网站赚钱最快免费seo排名优化
  • 阿里巴巴批发网站怎么做百度客服在线咨询人工服务
  • 网站后台更换首页图片市场营销手段13种手段
  • 网站建设技术和销售工资关键词优化排名软件流量词
  • 网站建设信息服务费计入什么科目做百度推广怎么做才能有电话
  • 自己做网站怎么让字体居中2021年近期舆情热点话题
  • 河南联通 网站备案seo教程免费
  • 怎么制作h5页面个人网站seo入门
  • 网站建设微信运营推广营销咨询服务
  • wordpress弹框大连seo关键词排名
  • wordpress主题移动seo搜索引擎优化软件
  • 云南专业做网站多少钱最近七天的新闻大事
  • 网站开发一定要用框架吗小红书怎么做关键词排名优化
  • 国际贸易官方网站网站优化资源
  • 网络宣传网站建设定制天津百度搜索排名优化
  • 网站模版 小清新百度最新版下载
  • 马鞍山网站建设专业制网络营销课程个人总结
  • 上海高端工作室网站seo域名如何优化
  • ui网页设计是什么宁波seo快速优化
  • 新手做站必看 手把手教你做网站百度推广怎么收费
  • 域名查询是什么意思seo专员是什么职业
  • 新开传奇网站刚开一秒站长源码
  • 电子商务营销网站建设易观数据
  • 两台电脑一台做服务器 网站网络营销网站建设
  • 免费logo设计的网站东莞企业网站模板建站
  • 领导不愿意做招聘网站怎么办搜索引擎排名竞价