当前位置: 首页 > news >正文

泰安集团网站建设地点企业管理培训公司排行榜

泰安集团网站建设地点,企业管理培训公司排行榜,免费seo软件,点餐系统网站建设现在要开始重点关注名字了,名字透漏了很多信息!名字暗藏线索! GBDT,Gradient Boosting Decision Tree: 梯度提升决策树 果然信息很丰富 梯度:意味着计算有迭代递进关系,但还不明确是怎么迭代递进的 提升&…

现在要开始重点关注名字了,名字透漏了很多信息!名字暗藏线索!

GBDT,Gradient Boosting Decision Tree: 梯度提升决策树

果然信息很丰富

梯度:意味着计算有迭代递进关系,但还不明确是怎么迭代递进的
提升:意味着前向分布式+加法模型,并且分类器之间是有相关提升的
决策树:CART决策树、C4.5、忘记名字了…

em…还是要再深挖深挖,小小的boosting,挖呀挖呀挖呀挖。。。
经过推导。。。发现,我的GBDT回归,实际就是上一篇提升树的二叉回归树…
看来可以省点儿功夫,不写代码,但可以稍微推导一下

首先,明确回归问题采用平方损失函数: L o s s ( y , f ( x ) ) = ( y − f ( x ) ) 2 Loss(y,f(x)) =(y-f(x))^2 Loss(y,f(x))=(yf(x))2

其中,f(x) 是强分类器,且当前强分类器 f m = f m − 1 + T m ( x , θ m ) f_m = f_{m-1}+T_m(x,θ_m) fm=fm1+Tm(x,θm)

问题来了,我们现在要求Loss最小,原本是可以直接使Loss对x求导,进而求出θ,得到强分类器的

但书上说了,有时候Loss对x求导,是无法实现的,说实话,我不知道为什么

不过,不妨碍我对GBDT进行推导

首先,梯度,是想要Loss成梯度逐步下降,那就采用让Loss在 f ( x ) = f m − 1 ( x ) f(x)=f_{m-1}(x) f(x)=fm1(x)处进行一阶泰勒展开

则有 L o s s ( y , f ( x ) ) = L o s s ( y , f m − 1 ( x ) ) + ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f ( x ) − f m − 1 ( x ) ] Loss(y,f(x)) = Loss(y,f_{m-1}(x))+\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f(x)-f_{m-1}(x)] Loss(y,f(x))=Loss(y,fm1(x))+əfm1(x)əL(y,fm1(x))[f(x)fm1(x)]

f ( x ) = f m ( x ) f(x) = f_m(x) f(x)=fm(x),则有

L ( y , f m ( x ) ) = L ( y , f m − 1 ( x ) ) + ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f m ( x ) − f m − 1 ( x ) ] L(y,f_m(x)) = L(y,f_{m-1}(x))+\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f_m(x)-f_{m-1}(x)] L(y,fm(x))=L(y,fm1(x))+əfm1(x)əL(y,fm1(x))[fm(x)fm1(x)]

Δ L o s s = L ( y , f m ( x ) ) − L ( y , f m − 1 ( x ) ) = ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f m ( x ) − f m − 1 ( x ) ] ΔLoss = L(y,f_m(x)) - L(y,f_{m-1}(x))=\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f_m(x)-f_{m-1}(x)] ΔLoss=L(y,fm(x))L(y,fm1(x))=əfm1(x)əL(y,fm1(x))[fm(x)fm1(x)]

其中 [ f m ( x ) − f m − 1 ( x ) ] = T ( x , θ m ) [f_m(x)-f_{m-1}(x)] = T(x,θ_m) [fm(x)fm1(x)]=T(x,θm)

要使下一次迭代时,Loss降低,则需要ΔLoss<0,那么对应的 ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ T ( x , θ m ) \frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*T(x,θ_m) əfm1(x)əL(y,fm1(x))T(x,θm)<0

那么,当 T ( x , θ m ) = − ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) T(x,θ_m)=-\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}} T(x,θm)=əfm1(x)əL(y,fm1(x))时,就可以保证 ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ T ( x , θ m ) \frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*T(x,θ_m) əfm1(x)əL(y,fm1(x))T(x,θm)<0

因此, T ( x , θ m ) = − ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) = ə ( y − f m − 1 ( x ) ) 2 ə f m − 1 ( x ) T(x,θ_m)=-\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}=\frac{ə_{(y-f_{m-1}(x))^2}}{ə_{f_{m-1}(x)}} T(x,θm)=əfm1(x)əL(y,fm1(x))=əfm1(x)ə(yfm1(x))2

为了求解简洁美观,可以 令 L o s s 为 1 2 ( y − f ( x ) ) 2 令Loss为\frac{1}{2}(y-f(x))^2 Loss21(yf(x))2

这样 T ( x , θ m ) = − ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) = 1 2 ə ( y − f m − 1 ( x ) ) 2 ə f m − 1 ( x ) = y − f m − 1 ( x ) T(x,θ_m)=-\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}=\frac{\frac{1}{2}ə_{(y-f_{m-1}(x))^2}}{ə_{f_{m-1}(x)}}=y-f_{m-1}(x) T(x,θm)=əfm1(x)əL(y,fm1(x))=əfm1(x)21ə(yfm1(x))2=yfm1(x)

哦!这不就是残差嘛 r = y − f m − 1 ( x ) r = y-f_{m-1}(x) r=yfm1(x) ,相当于每个新的弱分类器(准确来说,应该是基函数)都应该尽可能地去拟合残差

所以啊!!!!实际上一轮的提升树,本质上就是GBDT

不管,就先这么确定,以后打脸再说…好困

http://www.ds6.com.cn/news/94374.html

相关文章:

  • 口碑好的盐城网站建设谷歌广告投放
  • 单位网站建设的优势网站优化人员通常会将目标关键词放在网站首页中的
  • wordpress网站恢复百度app优化
  • 广州注册公司地址要求seo搜索引擎是什么
  • 营销推广的方式seo需要付费吗
  • 自己做网站租服务器云搜索app
  • 唐山做企业网站公司zoho crm
  • 做百度网站需要钱吗醴陵网站制作
  • 足球比方类网站开发男生最喜欢的浏览器
  • 做设计排版除了昵图网还有什么网站济南今日头条最新消息
  • wordpress文章评论插件seo短视频发布页
  • 服务器网站建设情况个人引流推广怎么做
  • 忻州市城乡建设局网站成都网站seo设计
  • 包装设计网站排行榜前十名整站优化cms
  • vs2015 手机网站开发甘肃省seo关键词优化
  • 织梦cms 网站栏目管理2024年最新一轮阳性症状
  • 济南建网站多少钱电销系统
  • 做特卖网站手机版南宁seo优化
  • 深圳家居网站建设公司排名优化是什么意思
  • 个人网站做重定向图片购买链接平台
  • 四川监理协会建设网站泰安seo公司
  • wordpress怎么备份数据库网站seo检测
  • 网站建设业务的延伸性优化算法
  • 网页设计制作代码大全专业seo整站优化
  • 建网站要多长时间app注册推广任务平台
  • 网站源码制作步骤竞价推广开户多少钱
  • 如何选择邯郸做网站东莞网站建设优化技术
  • 织梦网站更改主页链接头条权重查询站长工具
  • 淘宝客如何做淘宝客网站推广seo策略
  • 南宁互联网公司前十名网站优化的方法