当前位置: 首页 > news >正文

网站开发年收入什么是信息流广告

网站开发年收入,什么是信息流广告,广州骏域网站,长宁微信手机网站制作扩散模型系列: (1)扩散模型(一)——DDPM推导笔记-大白话推导 (2)扩散模型(二)——DDIM学习笔记-大白话推导 请提前关注,后续待更新,谢谢… 写在前面: (1)建议…

扩散模型系列:
(1)扩散模型(一)——DDPM推导笔记-大白话推导
(2)扩散模型(二)——DDIM学习笔记-大白话推导
请提前关注,后续待更新,谢谢…

写在前面:
(1)建议看这篇论文之前,可先看我写的前一篇论文:
扩散模型(一)——DDPM推导笔记-大白话推导

主要学习和参考了以下文章:
(1)一文带你看懂DDPM和DDIM
(2)关于 DDIM 采样算法的推导

0. DDIM的创新点

​ DDPM有一个很大的缺点就是其本身是一个马尔科夫链的过程,推理速度太慢,如果前向加噪过程是1000步,那么去噪过程就需要使用Unet生成噪声,然后去噪,这样进行1000步。这是一个及其缓慢的过程,DDIM原论文中举了一个生动的例子:

For example, it takes around 20 hours to sample 50k images of size 32 x 32 from a DDPM, but less than a minute to do so from a GAN on a Nvidia 2080 Ti GPU.

​ 基于DDPM,DDIM主要有两项改进:

​ (1)对于一个已经训练好的DDPM,只需要对采样公式做简单的修改,模型就能在去噪时「跳步骤」,在一步去噪迭代中直接预测若干次去噪后的结果。比如说,假设模型从时刻T=100开始去噪,新的模型可以在每步去噪迭代中预测10次去噪操作后的结果,也就是逐步预测时刻t=90,80,…,0的结果。这样,DDPM的采样速度就被加速了10倍。

​ (2)DDIM论文推广了DDPM的数学模型,打破了马尔科夫链的过程,从更高的视角定义了DDPM的反向过程(去噪过程)。在这个新数学模型下,我们可以自定义模型的噪声强度,让同一个训练好的DDPM有不同的采样效果。

1. 公式推导

​ DDPM的推导过程可以看《DDPM推导笔记》,这里假设 P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t, x_0) P(xt1xt,x0)满足如下正态分布,即:
P ( x t − 1 ∣ x t , x 0 ) ∼ N ( k x 0 + m x t , σ 2 ) 即 : x t − 1 = k x o + m x t + σ ϵ 其中有: ϵ ∼ N ( 0 , 1 ) (1) P(x_{t-1}|x_t, x_0) \sim N(kx_0+mx_t, \sigma^2) \\ 即:x_{t-1} = kx_o+mx_t + \sigma \epsilon \tag{1} \\ 其中有: \epsilon \sim N(0, 1) P(xt1xt,x0)N(kx0+mxt,σ2):xt1=kxo+mxt+σϵ其中有:ϵN(0,1)(1)
又因为前向的加噪过程满足:
x t = a t ˉ x 0 + 1 − a t ˉ ϵ 其中 ϵ ∼ N ( 0 , 1 ) (2) x_t = \sqrt{\bar{a_t}} x_0 + \sqrt{1 - \bar{a_t}} \epsilon \\ 其中\epsilon \sim N(0,1) \tag{2} xt=atˉ x0+1atˉ ϵ其中ϵN(0,1)(2)
合并(1)(2)上面两式,有:
x t − 1 = k x 0 + m [ a ˉ t x 0 + 1 − a ˉ t ϵ ] + σ ϵ (3) x_{t-1} = kx_0 + m[\sqrt{\bar{a}_t}x_0 + \sqrt{1-\bar{a}_t} \epsilon] + \sigma \epsilon \tag{3} xt1=kx0+m[aˉt x0+1aˉt ϵ]+σϵ(3)
再次合并有:
x t − 1 = ( k + m a ˉ t ) x 0 + ϵ ′ 其中: ϵ ’ ∼ M ( 0 , m 2 ( 1 − a ˉ t ) + σ 2 ) (4) x_{t-1} = (k+m\sqrt{\bar{a}_t}) x_0 + \epsilon' \\ 其中: \epsilon’ \sim M(0, m^2(1-\bar{a}_t) + \sigma^2) \tag{4} xt1=(k+maˉt )x0+ϵ其中:ϵM(0,m2(1aˉt)+σ2)(4)
从DDPM中可以可知:
x t − 1 = a ˉ t − 1 x 0 + 1 − a ˉ t − 1 ϵ (5) x_{t-1} = \sqrt{\bar{a}_{t-1}} x_0 + \sqrt{1-\bar{a}_{t-1}} \epsilon \tag{5} xt1=aˉt1 x0+1aˉt1 ϵ(5)
通过式(4)(5)的 x t − 1 x_{t-1} xt1服从的概率分布可知:
k + m a ˉ t = a ˉ t − 1 m 2 ( 1 − a ˉ t ) + σ 2 = 1 − a ˉ t − 1 (6) k + m\sqrt{\bar{a}_t} = \sqrt{\bar{a}_{t-1}} \\ m^2(1-\bar{a}_t) + \sigma^2 = 1-\bar{a}_{t-1} \tag{6} k+maˉt =aˉt1 m2(1aˉt)+σ2=1aˉt1(6)
由式(6)两个式子可解出:

将m,k带入到 P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t, x_0) P(xt1xt,x0)中,可得:

在这里插入图片描述

依旧可以使用 x t , x 0 x_t, x_0 xt,x0的关系式把 x 0 x_0 x0去掉:
x t = a t ˉ x 0 + 1 − a t ˉ ϵ 这里为了防止 ϵ 和后面的 ϵ 搞混,这里记为 ϵ t , 则上式变为: x t = a t ˉ x 0 + 1 − a t ˉ ϵ t (8) x_t = \sqrt{\bar{a_t}} x_0 + \sqrt{1 - \bar{a_t}} \epsilon \\ 这里为了防止\epsilon和后面的\epsilon搞混,这里记为\epsilon_{t},则上式变为:\\ x_t = \sqrt{\bar{a_t}} x_0 + \sqrt{1 - \bar{a_t}} \epsilon_t \tag{8} xt=atˉ x0+1atˉ ϵ这里为了防止ϵ和后面的ϵ搞混,这里记为ϵt,则上式变为:xt=atˉ x0+1atˉ ϵt(8)
P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t, x_0) P(xt1xt,x0)的概率分布采样可得到:
在这里插入图片描述

其中, ϵ \epsilon ϵ是从标准正太分布中,随机采样得到; ϵ t \epsilon_t ϵt是和DDPM一样,使用神经网络训练而来的; x t x_t xt是输入; a ˉ t − 1 和 a ˉ t \bar{a}_{t-1}和\bar{a}_t aˉt1aˉt是事先定义好的。至此,我们就只需要讨论 σ \sigma σ这个参数了。

2. σ \sigma σ的讨论

​ 怎样选取 σ \sigma σ才能获得最佳的加速效果呢?

​ 作者做了一些实验,作者原文中使用 σ τ i ( η ) \sigma_{\tau_i}{(\eta)} στi(η)来表示的 σ \sigma σ,其式子如下:
在这里插入图片描述

使用 η \eta η控制其大小。事实上,当 η = 1 \eta = 1 η=1时就变成了DDPM的去噪过程了,
在这里插入图片描述

η = 0 \eta=0 η=0时,效果是最好的。所以DDIM令 σ = 0 \sigma=0 σ=0

3. x p r e v x_{prev} xprev的推导

​ 从式9且 σ = 0 \sigma=0 σ=0,则式9中的所有都已知了!!!

​ 但是,即使这样,我们也还是由 x t 推导出 x t − 1 x_t推导出x_{t-1} xt推导出xt1呀,这样还是不能加快推理!

​ 不忙,我们回过头去思考,发现上面的推导过程中全程没有使用:
x t = a t x t − 1 + 1 − a t ϵ x_t= \sqrt{a_t}x_{t-1} + \sqrt{1-a_t} \epsilon xt=at xt1+1at ϵ
​ 也就可以不需要严格的由 x t 算到 x t − 1 x_t算到x_{t-1} xt算到xt1,则可以令 x p r e v 替代 x t − 1 x_{prev}替代x_{t-1} xprev替代xt1,式(9)则可以变换为:

在这里插入图片描述

​ 至此,所有的参数要是实现定义好了,要么是需要训练的,这样 x t 和 x p r e v x_t和x_{prev} xtxprev则可以相隔多个迭代步数。

4.疑难解答

Q1: 为什么式(11)可以简单的将 x p r e v 替代 x t − 1 x_{prev}替代x_{t-1} xprev替代xt1,毕竟虽然反向过程没有使用到 x t − 1 算到 x t x_{t-1}算到x_{t} xt1算到xt的关系式,但前向过程是使用到的呀?

​ 目前我也没有答案!还在理解中,由大佬路过,请留言讨论!

​ Q2: 为什么在DDIM可以令方差 σ = 0 \sigma=0 σ=0 ?

​ 目前我也没有答案!还在理解中,由大佬路过,请留言讨论!

http://www.ds6.com.cn/news/94001.html

相关文章:

  • 山东高端网站建设方案百度灰色关键词排名
  • 西安医疗网站制作网上推广的平台有哪些
  • 宝武马钢集团公司招聘网站广州网站优化排名系统
  • 给wordpress上锁seo是指什么意思
  • 在线设计平台csnva网站优化推广哪家好
  • 郑州天梯网站制作seoul national university
  • 企业简介模板100字西安网站seo哪家公司好
  • 免费空间做淘宝客网站什么关键词可以搜到那种
  • 学校如何报销网站开发费用互联网营销成功案例
  • 青秀网站建设今日新闻国际最新消息
  • 电子商城系统的设计与实现优化排名
  • phpcms v9 实现网站搜索系统优化大师下载
  • 太原百度关键词推广网站推广优化外包公司哪家好
  • 培训网站设计师营销网站建设推广
  • 动漫网站设计论文如何打百度人工电话
  • 青岛模版网站建设长春网站搭建
  • 专业做pc+手机网站企业网络营销策略分析案例
  • 成都网站建设哪家好文章金华网站建设
  • 哪些网站做推广比较有效果拼多多女装关键词排名
  • 东莞横沥理工学校吉林关键词排名优化软件
  • 在pc端网站基础上做移动端网站建设高端公司
  • 怎样给公司做网站视频互联网推广选择隐迅推
  • 郑州做营销型网站的公司西安疫情最新数据消息5分钟前
  • 骗别人做网站叶涛网站推广优化
  • 做网站多少钱PageAdminseo内部优化方案
  • 长沙房地产管理局seo网站推广企业
  • 网站程序怎么做fifa最新排名出炉
  • 网站设计价格最新疫情最新消息
  • 做网站用什么网站运营专员
  • wordpress小说网站模板网络运营推广合作