当前位置: 首页 > news >正文

企业门户网站开发平台的设计与实现店铺推广软文案例

企业门户网站开发平台的设计与实现,店铺推广软文案例,班级网站模板,微网站建设高端网站定制Flappy Bird QDN PyTorch博客 - 代码解读 介绍环境配置项目目录结构QDN算法重要函数解读preprocess(observation)DeepNetWork(nn.Module)BirdDQN类主程序部分 介绍 在本博客中,我们将介绍如何使用QDN(Quantile Dueling Network)算法&#xf…

Flappy Bird QDN PyTorch博客 - 代码解读

    • 介绍
    • 环境配置
    • 项目目录结构
    • QDN算法
    • 重要函数解读
      • preprocess(observation)
      • DeepNetWork(nn.Module)
      • BirdDQN类
      • 主程序部分

介绍

在本博客中,我们将介绍如何使用QDN(Quantile Dueling Network)算法,在PyTorch平台下训练Flappy Bird游戏。QDN算法是一种强化学习算法,特别适用于处理具有不确定性的环境,如游戏。
在这里插入图片描述

环境配置

在开始之前,请确保您已经配置好了以下环境:

(rl) PS C:\Users\dd> conda list
# packages in environment at D:\Software\Miniconda3\envs\rl:
#
# Name                    Version                   Build  Channel
numpy                     1.22.3           py38h7a0a035_0    defaults
numpy-base                1.22.3           py38hca35cd5_0    defaults
opencv-python             4.6.0.66                 pypi_0    pypi
pillow                    6.2.1                    pypi_0    pypi
pygame                    2.1.2                    pypi_0    pypi
pygments                  2.11.2             pyhd3eb1b0_0    defaults
python                    3.8.13               h6244533_0    defaults
python-dateutil           2.8.2              pyhd3eb1b0_0    defaults
python_abi                3.8                      2_cp38    conda-forge
pytorch                   1.8.2           py3.8_cuda11.1_cudnn8_0    pytorch-lts

请确保您的环境中包含了以上所列的依赖项,特别是PyTorch版本为1.8.2。

项目目录结构

在这里,我们将简要介绍项目的目录结构,以便您更好地理解整个项目的组织和文件布局。

项目根目录
|-- qdn_train.py          # QDN算法训练脚本
|-- flappy_bird.py        # Flappy Bird游戏实现
|-- model.py              # QDN模型定义
|-- replay_buffer.py      # 经验回放缓存实现
|-- utils.py              # 辅助工具函数
|-- ...

QDN算法

QDN(Quantile Dueling Network)算法是一种强化学习算法,用于训练智能体在Flappy Bird游戏中做出决策。以下是算法的关键要点:

  1. Replay Memory(记忆库): 在每个时间步,智能体与环境交互,将经验存储在记忆库中。这些经验包括当前状态、选择的动作、获得的奖励、下一个状态以及游戏是否终止。

  2. 神经网络架构: 使用PyTorch实现了一个神经网络,其中包括卷积层和全连接层。神经网络的输出是每个可能动作的Q值。

  3. 训练过程: 在每个时间步,智能体根据当前状态选择一个动作。通过与环境交互,获得下一个状态、奖励和终止信号。这些信息被用来更新神经网络的权重,以最大化预期累积奖励。

  4. Epsilon-Greedy Exploration: 在训练的早期阶段,智能体更多地依赖于探索,通过随机选择动作来发现更多可能的策略。随着训练的进行,探索率逐渐减小。

  5. Target Network: 为了稳定训练,引入了一个目标网络,定期从主网络复制参数。这有助于减小训练中的波动性。

重要函数解读

preprocess(observation)

将一帧彩色图像处理成黑白的二值图像。使用OpenCV将图像调整为80x80大小,转换为灰度图,并进行二值化处理。

DeepNetWork(nn.Module)

定义了神经网络的结构,包括卷积层和全连接层。用于近似Q值函数。

BirdDQN类

主要的强化学习智能体类,包括了以下主要函数:

  • save(): 保存训练好的模型参数。
  • load(): 加载已保存的模型参数。
  • train(): 使用小批量的记忆数据进行神经网络训练。
  • setPerception(): 更新记忆库,判断是否进行训练,输出当前状态信息。
  • getAction(): 根据当前状态,通过epsilon-greedy策略选择动作。
  • setInitState(): 初始化状态,将一帧图像复制四次作为初始输入。

主程序部分

创建了BirdDQN智能体实例,与Flappy Bird游戏环境交互,并不断执行动作,观察状态变化,更新神经网络参数。

以上是对代码的主要算法和函数的解读。这个项目结合了深度学习和强化学习,通过训练智能体来玩Flappy Bird游戏,展示了在PyTorch平台下的实现过程。如果读者有任何疑问或需要进一步解释,请在评论中提出。祝愿你在实践中获得成功!

http://www.ds6.com.cn/news/93888.html

相关文章:

  • 网站备案时间20工作日万网域名注册查询
  • nas 支持做网站北京环球影城每日客流怎么看
  • wordpress表单防止移动网站优化排名
  • 有哪些做的好看的网站企业网站推广方案设计毕业设计
  • 峰峰专业做网站怎么能在百度上做推广
  • 自己做交友网站邯郸seo
  • 深圳h5模板建站公司网络营销推广方案
  • 郑州小程序网站开发站内seo和站外seo区别
  • 你好南京网站百度上怎么打广告宣传
  • 宁波做网站排名的公司有哪些目前搜索引擎排名
  • wordpress图片网站高质量内容的重要性
  • 网站首页收录没有了怎么建免费网站
  • 毕业设计报告网站开发文娱热搜榜
  • asp.net mvc 5 网站开发之美怎么建立自己的网站
  • 科普文章在那个网站做线上推广平台
  • 我只做过web网站 怎么做APPseo站长工具综合查询
  • 郑州建设网站网站访问量
  • 服装网站建设论文对网络营销的理解
  • 嘉兴市建设官方网站深圳百度百科
  • 做网站 租服务器上海网站快速排名优化
  • 做信息流推广需要建立网站么东莞网站建设最牛
  • 网站建设丶金手指下拉14互联网营销方案
  • 网页设计分为哪几类武汉seo推广
  • 网站测试怎么做公司网站建设方案
  • 二手书网站建设日程表网络推广平台几大类
  • 网站建设商业计划书范文福州专业的seo软件
  • 多平台网店系统青海百度关键词seo
  • 成品直播app源码东莞seo培训
  • 品牌自适应网站建设优化怎么做
  • 淘宝网站开发费用天津seo网站排名优化公司