当前位置: 首页 > news >正文

个人注什么域名的网站软文营销的本质

个人注什么域名的网站,软文营销的本质,网站开发好做还是平面好做,网站建设需要敲代码吗展示了一个简单的二分类神经网络的训练和应用流程。主要步骤包括: 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与部署 加载和应用已训练的模型 1. 数据准备与预处理 在本例中,数据准备是通过两个 Numpy 数…

展示了一个简单的二分类神经网络的训练和应用流程。主要步骤包括:

1. 数据准备与预处理

2. 构建模型

3. 编译模型

4. 训练模型

5. 评估模型

6. 模型应用与部署

加载和应用已训练的模型


1. 数据准备与预处理

在本例中,数据准备是通过两个 Numpy 数组来完成的:

  • x:输入特征,形状为 (8, 2),包含 8 个数据点,每个数据点有 2 个特征。
  • y:标签,形状为 (8,),包含对应的 0 或 1 标签,表示每个输入点的类别。
x = np.array([[1, 1], [1, -1], [-1, 1], [-1, -1], [0.7, 0.7], [0.7, -0.7], [-0.7, -0.7], [-0.7, 0.7]])
y = np.array([1, 1, 1, 1, 0, 0, 0, 0])

2. 构建模型

使用 Keras 的 Sequential 模型来构建神经网络。此模型包含两个全连接层(Dense 层):

  • 第一个 Dense 层有 3 个单位,激活函数是 Sigmoid。
  • 第二个 Dense 层有 1 个单位,激活函数是 Sigmoid,输出层的激活函数将模型输出的值映射到 0 到 1 之间,适合二分类任务。
l1 = tf.keras.layers.Dense(units=3, activation='sigmoid')
l2 = tf.keras.layers.Dense(units=1, activation='sigmoid')
model = tf.keras.Sequential([l1, l2])

3. 编译模型

在编译阶段,我们选择了优化器、损失函数和评估指标:

  • 优化器:SGD(随机梯度下降),学习率设置为 0.9。
  • 损失函数:binary_crossentropy,适用于二分类任务。
  • 评估指标:accuracy,表示训练过程中对分类准确率的衡量。
sgd = tf.keras.optimizers.SGD(learning_rate=0.9)
model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['accuracy'])

4. 训练模型

通过 model.fit() 函数来训练模型。我们传入训练数据 x 和标签 y,并设置训练的 epoch 数量为 2000。

model.fit(x, y, epochs=2000)

5. 评估模型

在此示例中,评估部分通过训练后的 model 来进行,并没有显式写出 evaluate() 函数。评估通常是在训练之后,通过测试集或验证集对模型性能进行评估,具体可以使用 model.evaluate() 来查看损失和准确度。

6. 模型应用与部署

训练完成后,我们保存了训练好的模型。保存后的模型可以被加载和应用于新的数据集。

model.save('my_model.keras')  # 保存模型

7.加载和应用已训练的模型

加载保存的模型,并用其对新数据进行预测。model.predict() 方法返回的是预测的概率值,我们通过设置阈值(如 0.9)将其转换为类别(0 或 1)。

model = tf.keras.models.load_model('my_model.keras')  # 加载模型
nx = np.array([[2, 2], [0.1, 0.1], [1.1, 1.2], [0.3, 0.3]])  # 新的输入数据
predictions = model.predict(nx)  # 获取预测结果
print(predictions)  # 输出概率# 将概率转化为类别
predicted_classes = (predictions > 0.9).astype(int)
print(predicted_classes)  # 输出最终的类别预测

8.完整代码
test.py 训练模型

import tensorflow as tf
import numpy as np
# 创建int32类型的0维张量,即标量
l1=tf.keras.layers.Dense(units=3,activation='sigmoid')
l2=tf.keras.layers.Dense(units=1,activation='sigmoid')
model=tf.keras.Sequential([l1,l2])
sgd = tf.keras.optimizers.SGD(learning_rate=0.9)
model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['accuracy'])
x=np.array([[1,1],[1,-1],[-1,1],[-1,-1],[0.7,0.7],[0.7,-0.7],[-0.7,-0.7],[-0.7,0.7]])
y=np.array([1,1,1,1,0,0,0,0])
model.fit(x,y,epochs=2000)
# 保存训练好的模型(Keras 格式)
model.save('my_model.keras')

 test2.py加载模型并进行预测:

import tensorflow as tf
import numpy as np# 加载训练好的模型
model = tf.keras.models.load_model('my_model.keras')# 预测数据
nx = np.array([[2, 2], [0.1, 0.1], [1.1, 1.2], [0.3, 0.3]])# 获取预测结果
predictions = model.predict(nx)# 输出预测结果
print(predictions)# 如果需要将概率转化为类别(0或1)
predicted_classes = (predictions > 0.9).astype(int)# 输出最终的类别预测
print(predicted_classes)

9.视频分享


初识TensorFlow 
https://v.douyin.com/ifG2mmLH/
复制此链接,打开Dou音搜索,直接观看视频!

http://www.ds6.com.cn/news/90697.html

相关文章:

  • wordpress无插件对接公众号朝阳seo排名
  • 做网站送邮箱关于进一步优化落实疫情防控措施
  • 邳州微网站开发网络公司网站建设
  • 做百度网站需要多少钱天津谷歌优化
  • 网站建设的特点黑帽seo优化软件
  • isite企业建站系统百度下载app下载安装
  • 太原网站seo外包线上推广平台报价
  • 类似优酷的网站开发网络营销好找工作吗
  • 网站访客关键词推广效果分析
  • wordpress中文伪原创浙江seo外包
  • 郑州微信网站制作网络营销总结及体会
  • 车上seo是什么意思西安seo网站推广优化
  • 福田附近公司做网站建设多少钱阿里指数官网入口
  • 此网站域名即将过期百度关键词关键词大全
  • 制作一个静态网站的步骤站外推广方式有哪些
  • 买外贸服装去哪个网站公司网站建设哪个好
  • 新疆建设厅进疆备案官方网站seo自学
  • 建设部网站法律法规seo关键词排名公司
  • 人民政府门户网站首页最新营销模式有哪些
  • 台州网站排名优化价格seo排名工具外包
  • 网站建设需要哪些岗位江苏网络推广公司
  • 上海cms建站关键词排名方案
  • 做带会员后台的网站用什么软件关键词app
  • 北京网站建设的服务商自己建网站流程
  • 网站怎么做认证seo诊断的网络问题
  • 做漫画网站的素材网站推广常用的方法
  • 平面设计毕业设计作品东莞seo代理
  • 做网站广告收入沈阳百度推广排名优化
  • 网站怎么更新网页内容青岛最新消息
  • 定制企业网站网站网络营销公司