当前位置: 首页 > news >正文

做企业内刊有哪些网站推荐第一推广网

做企业内刊有哪些网站推荐,第一推广网,网站设计开发的销售主要工作,如何网站做百度推广定义:是一个优化算法,也成最速下降算法,主要的部的士通过迭代找到目标函数的最小值,或者收敛到最小值。 说人话就是求一个函数的极值点,极大值或者极小值 算法过程中有几个超参数: 学习率n,又称…

定义:是一个优化算法,也成最速下降算法,主要的部的士通过迭代找到目标函数的最小值,或者收敛到最小值。
说人话就是求一个函数的极值点,极大值或者极小值

算法过程中有几个超参数:
学习率n,又称每次走的步长, n会影响获得最优解的速度,取值不合适的时候可能达不到最优解
阈值 threshold, 当两步之间的差值

求解步骤

  1. 给定初始点x,阈值和学习率
  2. 计算函数在该点的导数
  3. 根据梯度下降公式得到下一个x点:x=x-学习率*导数
  4. 计算更新前后两点函数值的差值
  5. 如果差值小于阈值则找到极值点,否则重复2-5步

例如用梯度下降算法计算下列函数的极值点 y = ( x − 2.5 ) 2 − 1 y = (x-2.5)^2 -1 y=(x2.5)21
构造数据

import numpy as np
import matplotlib.pyplot as  plt
plot_x = np.linspace(-1, 6, 141)
plot_y = (plot_x - 2.5) ** 2 - 1
plt.plot(plot_x, plot_y)

def J(theta):  #原始函数return ((theta - 2.5)**2 - 1)def dJ(theta): #导数return 2*(theta - 2.5)def gradient_descent(xs, x, eta, espilon):theta = xxs.append(x)while True:gradient = dJ(theta)last_theta = thetatheta = theta - eta * gradientxs.append(theta)if (abs(J(theta) - J(last_theta)) < espilon):breaketa = 0.0001 #每次前进的 x
xs = []
espilon = 1e-8
gradient_descent(xs, 1, eta, espilon)plt.plot(plot_x, J(plot_x))
plt.plot(np.array(xs), J(np.array(xs)), color="r", marker="+")
print(xs[-1])

2.495000939618705
请添加图片描述

起点我们也可以从另一端开始
例如5

eta = 0.0001 #每次前进的 x
xs = []
espilon = 1e-8
gradient_descent(xs, 5, eta, espilon)plt.plot(plot_x, J(plot_x))
plt.plot(np.array(xs), J(np.array(xs)), color="r", marker="+")
print(xs[-1])

请添加图片描述

计算的极值点 y = − ( x − 2.5 ) 2 − 1 y = -(x-2.5)^2 -1 y=(x2.5)21

def J(theta):  #原始函数return -((theta - 2.5)**2 - 1)def dJ(theta): #导数return -2*(theta - 2.5)def gradient_descent(xs, x, eta, espilon):theta = xxs.append(x)while True:gradient = dJ(theta)last_theta = thetatheta = theta + eta * gradientxs.append(theta)if (abs(J(theta) - J(last_theta)) < espilon):breaketa = 0.0001 #每次前进的 x
xs = []
espilon = 1e-8
gradient_descent(xs, 1, eta, espilon)plt.plot(plot_x, J(plot_x))
plt.plot(np.array(xs), J(np.array(xs)), color="r", marker="+")
print(xs[-1])

请添加图片描述

使用梯度下降算法计算最简单的线性模型

假设有两组数据

x = np.array([55, 71, 68, 87, 101, 87, 75, 78, 93, 73])
y = np.array([91, 101, 87, 109, 129, 98, 95, 101, 104, 93])

线性模型的损失函数如下:

f = ∑ n = 1 n ( y i − ( w 0 + w i x i ) ) 2 f = \sum_{n=1}^n (y_i - (w_0 + w_i x_i))^2 f=n=1n(yi(w0+wixi))2

其中 w0 和 w1 是我们要求的值,他们代表了线性方程中的两个系数

分别对w0 和 w1求偏导数

∂ f ∂ w 0 = − 2 ∑ n = 1 n ( y i − ( w 0 + w i x i ) ) \frac{\partial f}{\partial w_0} = -2\sum_{n=1}^n(y_i-(w_0+w_ix_i)) w0f=2n=1n(yi(w0+wixi))

∂ f ∂ w 1 = − 2 ∑ n = 1 n x i ( y i − ( w 0 + w i x i ) ) \frac{\partial f}{\partial w_1} = -2\sum_{n=1}^nx_i(y_i-(w_0+w_ix_i)) w1f=2n=1nxi(yi(w0+wixi))

注意区分w1 多了一个xi

参照公式 x=x-学习率*导数
得到

w0_gradient = -2 * sum((y - y_hat))
w1_gradient = -2 * sum(x * (y - y_hat))
def ols_gradient_descent(x, y, lr, num_iter):'''x 自变量y 因变量num_iter -- 迭代次数返回:w1 -- 线性方程系数w0 -- 线性方程的截距'''w1 = 0w0 = 0for i in range(num_iter):y_hat = (w1 * x) + w0w0_gradient = -2 * sum((y - y_hat))w1_gradient = -2 * sum(x * (y - y_hat))w1 -= lr * w1_gradientw0 -= lr * w0_gradientreturn w1, w0x = np.array([55, 71, 68, 87, 101, 87, 75, 78, 93, 73])
y = np.array([91, 101, 87, 109, 129, 98, 95, 101, 104, 93])lr = 0.00001 # 迭代步长
num_iter = 500 #迭代次数
w1, w0 = ols_gradient_descent(x, y, lr=0.00001, num_iter=500)print(w1, w0)
xs = np.array([50, 100])
ys = xs * w1 + w0plt.plot(xs, ys, color = "r")
plt.scatter(x, y)

w1 = 1.2633124475159723
w0 = 0.12807483308616532

请添加图片描述

http://www.ds6.com.cn/news/89283.html

相关文章:

  • 做幼儿网站的目标遵义网站seo
  • 网站建设伍际网络网络营销公司名字
  • 十堰网站制作公司自有品牌如何推广
  • 做外贸是哪里网站百度网址导航主页
  • 新鸿儒做网站百度top排行榜
  • 江西省建设招标网站windows优化大师免费
  • 滕州网站制作哪家好什么网站推广比较好
  • 手机网站微信支付接口开发教程东莞好的网站国外站建设价格
  • 免费app制作网站附近的成人电脑培训班
  • 网站 公安局备案 接入单位搜索广告排名
  • 邢台地区网站建设售后完善优化软件刷排名seo
  • 建设网站预算青岛网站建设公司排名
  • 微网站如何做横幅链接百度一下网页版浏览器百度
  • 汕头市疫情最新消息独立站seo外链平台
  • 公司做二手网站的用意宁德市教育局
  • axure可以做网站吗b站软件推广大全
  • 企业网站建设现状对网络营销的认识有哪些
  • 在服务器上布网站怎么做长沙官网优化公司
  • 做网站的前端技术百度app客服电话
  • 青岛网站策划万能引流软件
  • 国家发改委网站开发区b站免费推广app大全
  • wordpress 国内视频网站推广策略怎么写
  • 10黄页网站建设谷歌搜索引擎入口google
  • pbootcms网站优化提升排名
  • 模板网站制作多少钱seo模拟点击软件
  • 新郑市网站建设黑帽seo是什么意思
  • app和微网站的对比seo公司哪家好用
  • 一个可以看qq空间的网站百度推广客户端电脑版
  • 外贸网站推广哪个平台好网站排名靠前
  • 沈阳做公司网站的公司青岛seo网络推广