当前位置: 首页 > news >正文

北京欢迎你网站制作公司东莞seo建站优化哪里好

北京欢迎你网站制作公司,东莞seo建站优化哪里好,做推广任务网站,好看的网站 你知道的2021系列文章目录 目录 系列文章目录 前言 一、Lerobot So100/So101 微调教程 1.1 数据集 1.2 微调 1.3 开环评估 1.4 部署 二、Unitree G1 微调 2.1 下载数据集 2.2 尝试加载数据集并可视化它 2.3 微调 2.4 开环评估 2.5 部署 前言 本笔记本是一份关于如何在新的数据…

系列文章目录

    目录

    系列文章目录

    前言

    一、Lerobot So100/So101 微调教程

    1.1 数据集

    1.2 微调

    1.3 开环评估

    1.4 部署

    二、Unitree G1 微调

    2.1 下载数据集

    2.2 尝试加载数据集并可视化它

    2.3 微调

    2.4 开环评估

    2.5 部署


    前言

            本笔记本是一份关于如何在新的数据集上对GR00T-N1预训练模型进行微调的教程。


    一、Lerobot So100/So101 微调教程

            GR00T-N1.5 适用于各种机器人形态的用户。基于 Huggingface 的低成本 So101 Lerobot 机械臂,用户可通过 new_embodiment 标签在自己的机器人上对 GR00T-N1.5 进行微调。

    So100 Strawberry and Grape PickingSo101 Table Cleanup Task

    {width=400}

    {width=400}

    DatasetObservationViz Link
    so101-table-cleanupDual camera views of table cleanup taskLink
    so100_strawberry_grapeSingle camera view of strawberry and grape pickingLink
    tictac-botSingle camera view of a tic-tac-toe boardLink

    1.1 数据集

            用户可以使用任何 lerobot 数据集进行微调。在本教程中,我们将首先使用一个示例数据集:so101-table-cleanup

    请注意,此实现未包含在我们的预训练数据集混合中。

    首先,下载数据集

    huggingface-cli download \--repo-type dataset youliangtan/so101-table-cleanup \--local-dir ./demo_data/so101-table-cleanup

            其次,复制模态文件

    modality.json 文件提供了关于状态和动作模态的额外信息,以使其与“GR00T”兼容。将 examples/so100_dualcam__modality.json 复制到数据集 <DATASET_PATH>/meta/modality.json。

            对于类似 so101-table-cleanup 数据集的双摄像头设置,请执行以下操作:

    cp examples/so100_dualcam__modality.json ./demo_data/so101-table-cleanup/meta/modality.json

            对于单摄像头设置,如 so100_strawberry_grape 数据集,请执行以下操作:

    cp examples/so100__modality.json ./demo_data/so100_strawberry_grape/meta/modality.json

    然后我们可以使用LeRobotSingleDataset类加载数据集。

    1.2 微调

            微调可以通过使用我们的微调脚本/gr00t_finetune.py来完成,因为它支持“new-embodiment”标签。

    python scripts/gr00t_finetune.py \--dataset-path /datasets/so101-table-cleanup/ \--num-gpus 1 \--batch-size 64 \--output-dir ~/so101-checkpoints  \--max-steps 10000 \--data-config so100_dualcam \--video-backend torchvision_av

    将批处理大小调整为与您的GPU内存匹配。

    1.3 开环评估

            训练完成后,您可以运行以下命令来可视化微调后的策略。

    python scripts/eval_policy.py --plot \--embodiment_tag new_embodiment \--model_path <YOUR_CHECKPOINT_PATH> \--data_config so100_dualcam \--dataset_path /datasets/so101-table-cleanup/ \--video_backend torchvision_av \--modality_keys single_arm gripper

            这是在训练策略7000步后的结果。

            

            经过更多步骤的训练后,模型性能将显著提升。

            太棒了!您已成功在新的实现上对GR00T-N1.5进行了微调。

    1.4 部署

            首先,确保数据可重放,请参考lerobot文档:https://huggingface.co/docs/lerobot/so101

            在机器人上评估策略:

    python eval_lerobot.py \--robot.type=so101_follower \--robot.port=/dev/ttyACM0 \--robot.id=lil_guy \--robot.cameras="{ wrist: {type: opencv, index_or_path: 9, width: 640, height: 480, fps: 30}, front: {type: opencv, index_or_path: 15, width: 640, height: 480, fps: 30}}" \--policy_host=10.112.209.136 \--lang_instruction="Grab pens and place into pen holder."

    有关部署的更多详细信息,请参阅笔记本:5_policy_deployment.md

    二、Unitree G1 微调

            本节展示如何在 Unitree G1 机器人上进行微调,作为新的实现方式。数据集可从以下链接获取:nvidia/PhysicalAI-Robotics-GR00T-Teleop-G1

    规格:

    • 观察:43 维向量化状态(全身和双手的关节位置)
    • 动作:43 维向量化动作(全身和双手的关节位置)
    • 视频:RGB 视频,分辨率为 640x480,帧率为 20fps
    • 语言指令:
      • “从桌子上拿起苹果,把它放进篮子里。”
      • “从桌子上拿起梨并放入篮子。”
      • “从桌子上拿起葡萄并放入篮子。”
      • “从桌子上拿起星果并放入篮子。”

    2.1 下载数据集

    huggingface-cli download \--repo-type dataset nvidia/PhysicalAI-Robotics-GR00T-Teleop-G1 \--local-dir ./datasets/

    2.2 尝试加载数据集并可视化它

            示例:加载苹果数据集的第一集

    python scripts/load_dataset.py --dataset-path datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-apple/ --plot-state-action### Similar for other fruits
    # Switch to other fruits -- pear, grapes, starfruit

            ·您应看到以下图表:

    2.3 微调

            在此,我们可以提供用于微调的數據集列表。我们将使用包含苹果、梨、葡萄和星果采摘任务的混合数据集对模型进行微调。

    dataset_list=("datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-apple/""datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-pear/""datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-grapes/""datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-starfruit/"
    )python scripts/gr00t_finetune.py \--dataset-path ${dataset_list[@]} \--num-gpus 1 --batch-size 95  --output-dir ~/checkpoints/full-g1-mix-fruits/  \--data-config unitree_g1 --max-steps 15000

    注意:由于该数据集采用H.264编码格式录制,因此在加载视频时需使用decord后端。

    2.4 开环评估

            示例:评估苹果数据集

    python scripts/eval_policy.py --plot \--embodiment_tag new_embodiment \--model_path <YOUR_CHECKPOINT_PATH> \--data_config unitree_g1 \--dataset_path datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-apple/ \--video_backend decord \--modality_keys left_arm right_arm

            我们可以看出,策略对动作的预测似乎与真实情况非常接近,这表明微调是成功的。然而,对于策略的实际性能,我们需要在真实机器人上进行评估。

    2.5 部署

            G1 的部署脚本在此未提供。但该管道与 so100 微调管道类似。

    http://www.ds6.com.cn/news/86882.html

    相关文章:

  • 买卖域名哪个网站好武汉seo优化代理
  • 阿里巴巴国际站外贸流程成都百度推广优化创意
  • 政府网站建设工作总结6百度集团股份有限公司
  • 做家具商城网站谷歌在线搜索
  • 中铁建设集团官网谷歌seo服务商
  • 旅行网站建设论文摘要爱站网能不能挖掘关键词
  • 网站 成功因素线在成都网站推广公司
  • 视频网站免费送会员怎么做谷歌play商店
  • 企业宣传手册模板免费seo就业前景
  • 湘潭学校网站建设 磐石网络专注怎么自己弄一个网站
  • 网页背景图片适合网页深圳优化网站
  • 门户网站建设公司方案湖南优化公司
  • 武汉做网站的公司哪家好平台推广费用一般是多少
  • 网店美工毕业设计宁波专业seo服务
  • behance设计网站怎么念qq刷赞网站推广快速
  • 可以用css3做响应式网站吗seo 优化技术难度大吗
  • 哪个网站可以做试卷全国最大的关键词挖掘
  • wordpress站点是什么意思深圳网络推广有几种方法
  • 猎头自己在哪个网站做单怎么引流到微信呢
  • 网站制作教程手机成都seo优化推广
  • 建站系统运营网站免费制作
  • 广州短视频网站开发重庆营销型网站建设公司
  • 做做网站竞价推广教程
  • 服务器网站怎么做的网站设计专业的公司
  • 不会代码建设网站看书网站排名
  • 设计网站免费下载软文营销代理
  • 宜宾网站优化在线培训管理系统
  • 贵州省建设网官方网站淘宝搜索词排名查询
  • 炫酷的网站设计长沙关键词自然排名
  • 教育网站集群建设申请宁波正规站内优化seo