当前位置: 首页 > news >正文

杭州市建设委员会网站淘宝关键词优化推广排名

杭州市建设委员会网站,淘宝关键词优化推广排名,邯郸招工信息网,公共网络建设指导书本文已收录于专栏🌸《Java入门一百例》🌸学习指引序、专栏前言一、递推与记忆化二、【例题1】1、题目描述2、解题思路3、模板代码4、代码解析5.原题链接三、【例题1】1、题目描述2.解题思路3、模板代码4、代码解析5、原题链接三、推荐专栏四、课后习题序…
本文已收录于专栏
🌸《Java入门一百例》🌸

学习指引

  • 序、专栏前言
  • 一、递推与记忆化
  • 二、【例题1】
    • 1、题目描述
    • 2、解题思路
    • 3、模板代码
    • 4、代码解析
    • 5.原题链接
  • 三、【例题1】
    • 1、题目描述
    • 2.解题思路
    • 3、模板代码
    • 4、代码解析
    • 5、原题链接
  • 三、推荐专栏
  • 四、课后习题

序、专栏前言

   本专栏开启,目的在于帮助大家更好的掌握学习Java,特别是一些Java学习者难以在网上找到系统地算法学习资料帮助自身入门算法,同时对于专栏内的内容有任何疑问都可在文章末尾添加我的微信给你进行一对一的讲解。
   但最最主要的还是需要独立思考,对于本专栏的所有内容,能够进行完全掌握,自己完完全全将代码写过一遍,对于算法入门肯定是没有问题的。
   算法的学习肯定不能缺少总结,这里我推荐大家可以到高校算法社区将学过的知识进行打卡,以此来进行巩固以及复习。
  学好算法的唯一途径那一定是题海战略,大量练习的堆积才能练就一身本领。专栏的任何题目我将会从【题目描述】【解题思路】【模板代码】【代码解析】等四板块进行讲解。

一、递推与记忆化

  在算法的学习中,有许多的题目需要我们递推得到答案,这需要我们去发掘出递推式子得到答案。就好比我们在一个有向图上想要到达终点,需要从起点一步步找到终点,所以相邻的点之间一定会有着某种关联,这种关联就是我们的递推式。斐波那契数列和爬楼梯两道题可以说是所有递推入门的经典题目,同时递推思想也可以看作是最简单动态规划思想。当然在递推时,为了减少重复计算,我们还用叫做记忆化的优化方法,可以帮我们节省大量的时间。

二、【例题1】

1、题目描述

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

  • F(0) = 0, F(1) = 1
  • F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
  • 斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
    答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

2、解题思路

  核心在于递推式:F(N)=F(N−1)+F(N−2)F(N) = F(N - 1) + F(N - 2)F(N)=F(N1)+F(N2)

  显然式子含义为每个数为前两个数之和,我们根据式子递推即可。

3、模板代码

超时代码:

class Solution {public int fib(int n) {return f(n);}int f(int x){if(x==1) return 1;if(x==0) return 0;return (f(x-1)+f(x-2))%1000000007;}
}

递归记忆化代码:

class Solution {int[] a=new int[110];public int fib(int n) {Arrays.fill(a,-1);a[0]=0;a[1]=1;dfs(n);return a[n];}int dfs(int x){if(a[x]!=-1) return a[x];return a[x]=(dfs(x-1)+dfs(x-2))%1000000007;}
}

递推代码:

class Solution {public int fib(int n) {if(n==0) return 0;int[] f=new int[n+1];f[0]=0;f[1]=1;for(int i=2;i<=n;++i){f[i]=(f[i-1]+f[i-2])%1000000007;}return f[n];}
}

4、代码解析

  显然,无论是递推还是记忆化代码,我们都需要使用数组记录答案,否则当我们求解 f(n)f(n)f(n)时,本来我们已经计算出了f(n−1)f(n-1)f(n1)f(n−2)f(n-2)f(n2),结果又得重新计算一次,从而导致计算量变大超时。可以直接使用数组递推时,其本身就有记忆化功能,如果使用递归来进行 dpdpdp,则大家最好加上记忆化。

5.原题链接

斐波那契数列

三、【例题1】

1、题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

2.解题思路

  定义 f(n)f(n)f(n)为走到第 nnn 阶楼梯有多少种走法,显然第 nnn 阶只能从第 n−1n-1n1 或者 n−2n-2n2 阶走过来,于是我们得到递推式:
f(n)=f(n−1)+f(n−2)f(n) = f(n - 1) + f(n - 2)f(n)=f(n1)+f(n2)
  (惊喜发现这不是和斐波那契数列一样的吗哈哈哈,那么题目迎刃而解啦,但是注意初始化有略微区别

3、模板代码

递推代码:

class Solution {public int climbStairs(int n) {int[] f=new int[n+1];if(n==1) return 1;f[1]=1;f[2]=2;for(int i=3;i<=n;++i){f[i]=f[i-1]+f[i-2];}return f[n];}
}

递推记忆化代码:

class Solution {int[] f=new int[50];public int climbStairs(int n) {Arrays.fill(f,-1);if(n==1) return 1;f[1]=1;f[2]=2;dfs(n);return f[n];}int dfs(int x){if(f[x]!=-1) return f[x];return f[x]=dfs(x-1)+dfs(x-2);}
}

4、代码解析

注意到爬楼梯和斐波那契初始化不同,递推式相同。

5、原题链接

爬楼梯
在这里插入图片描述

三、推荐专栏

🌌《零基础学算法100天》🌌

四、课后习题

序号题目链接难度评级
1 使用最小花费爬楼梯1
👇 学习有疑问?👇
http://www.ds6.com.cn/news/80776.html

相关文章:

  • 代理 指定网站 host59软文网
  • 天河网站 建设seo信科分公司seo研究中心vip教程
  • 做独立网站的启发公关公司排行榜
  • 武汉建设管理局网站推广排名优化
  • 精品课程网站建设建议企业seo职位
  • 胶州建设局网站360优化大师历史版本
  • 合肥网站制作公司排名semester at sea
  • 中文网站搭建名词解释seo
  • 做英语作业的网站网站怎样关键词排名优化
  • 哪个网站能帮助做路书九个关键词感悟中国理念
  • 江宁网站建设方案搜索引擎营销原理
  • 专业做辅助的网站网游百度搜索风云榜
  • 学做动态网站的步骤百度推广客服电话24小时
  • 淘客网站怎么做 知乎新东方留学机构官网
  • 规模以上工业企业划分标准seo网站诊断分析报告
  • 手机网络山西seo排名
  • 如何做自己网站快速seo优化
  • 网页设计工资一般2017成都seo经理
  • 企业做网站价格seo排名优化推广报价
  • 微信开发网站建设北京官方seo搜索引擎优化推荐
  • 上海网站建设网页制作培训网络推广网络营销外包
  • 大团企业网站制作淘宝推广费用多少钱一天
  • 我家云物业管理系统汕头seo网络推广服务
  • 做国际网站怎么能快速打开网站google搜索优化
  • 建设彩票网站需要哪些要求天津网站seo设计
  • 做网站步骤网络游戏推广公司
  • 每天网站外链做几条最好网站链接交易
  • 网站制作报价单模板杭州百家号优化
  • 自己做网站需要填税表吗篮网最新消息
  • 物流网站建设推广团队在哪里找