当前位置: 首页 > news >正文

电脑网站怎样给网页做适配网站怎么找

电脑网站怎样给网页做适配,网站怎么找,甘肃张掖网站建设,政府网站建设调查报告目录 十五、图像分割 简单阈值分割 (threshold) 自适应阈值分割 (adaptiveThreshold) 颜色范围分割 (inRange) 分水岭算法 (watershed) 泛洪填充 (floodFill) GrabCut算法 (grabCut) 距离变换 (distanceTransform) 最大稳定极值区域检测 (MSER) 均值漂移滤波 (pyrMean…

目录

十五、图像分割

简单阈值分割 (threshold)

自适应阈值分割 (adaptiveThreshold)

颜色范围分割 (inRange)

分水岭算法 (watershed)

泛洪填充 (floodFill)

GrabCut算法 (grabCut)

距离变换 (distanceTransform)

最大稳定极值区域检测 (MSER)

均值漂移滤波 (pyrMeanShiftFiltering)

十六、连通域

计算连通组件 (connectedComponents)

计算连通组件并返回统计信息 (connectedComponentsWithStats)

解释

http://t.csdnimg.cn/i8pqt —— opencv—常用函数学习_“干货“_总(VIP)

散的正在一部分一部分发,不需要VIP。

资料整理不易,有用话给个赞和收藏吧。


十五、图像分割

        在OpenCV中,图像分割是将图像分割成不同区域或对象的过程,常用于对象检测、识别和图像分析。下面介绍一些常用的图像分割函数及其使用示例。

图像分割函数
thresholdadaptiveThresholdinRangewatershedfloodFill
简单阈值分割自适应阈值分割颜色范围分割分水岭算法泛洪填充
grabCutdistanceTransformMSERpyrMeanShiftFiltering
GrabCut算法距离变换最大稳定极值区域检测均值漂移滤波
简单阈值分割 (threshold)
import cv2
import numpy as np# 读取图像
image = cv2.imread('path_to_image.jpg', cv2.IMREAD_GRAYSCALE)# 应用简单阈值分割
_, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('Binary Image', binary_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
自适应阈值分割 (adaptiveThreshold)
# 应用自适应阈值分割
adaptive_thresh = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 11, 2)
cv2.imshow('Adaptive Threshold Image', adaptive_thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()
颜色范围分割 (inRange)
# 读取彩色图像
color_image = cv2.imread('path_to_image.jpg')# 定义颜色范围
lower_bound = np.array([0, 120, 70])
upper_bound = np.array([10, 255, 255])# 转换到HSV颜色空间
hsv_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2HSV)# 应用颜色范围分割
mask = cv2.inRange(hsv_image, lower_bound, upper_bound)
cv2.imshow('Mask', mask)
cv2.waitKey(0)
cv2.destroyAllWindows()
分水岭算法 (watershed)
# 读取图像并转换为灰度图
gray = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)# 确定背景区域
kernel = np.ones((3, 3), np.uint8)
sure_bg = cv2.dilate(binary, kernel, iterations=3)# 确定前景区域
dist_transform = cv2.distanceTransform(binary, cv2.DIST_L2, 5)
_, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)# 确定未知区域
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg, sure_fg)# 标记连通组件
_, markers = cv2.connectedComponents(sure_fg)# 为确保背景为1,增加1
markers = markers + 1# 将未知区域标记为0
markers[unknown == 255] = 0# 应用分水岭算法
markers = cv2.watershed(color_image, markers)
color_image[markers == -1] = [0, 0, 255]cv2.imshow('Watershed', color_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
泛洪填充 (floodFill)
# 应用泛洪填充
flood_filled = color_image.copy()
h, w = flood_filled.shape[:2]
mask = np.zeros((h + 2, w + 2), np.uint8)
cv2.floodFill(flood_filled, mask, (0, 0), (255, 0, 0))cv2.imshow('Flood Fill', flood_filled)
cv2.waitKey(0)
cv2.destroyAllWindows()
GrabCut算法 (grabCut)
# 初始化掩码
mask = np.zeros(color_image.shape[:2], np.uint8)# 定义矩形
rect = (50, 50, 450, 290)# 定义模型
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)# 应用GrabCut算法
cv2.grabCut(color_image, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)
mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')
grabcut_image = color_image * mask2[:, :, np.newaxis]cv2.imshow('GrabCut', grabcut_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
距离变换 (distanceTransform)
# 应用距离变换
dist_transform = cv2.distanceTransform(binary, cv2.DIST_L2, 5)
cv2.imshow('Distance Transform', dist_transform)
cv2.waitKey(0)
cv2.destroyAllWindows()
最大稳定极值区域检测 (MSER)
# 创建MSER对象
mser = cv2.MSER_create()# 检测MSER区域
regions, _ = mser.detectRegions(gray)# 绘制检测到的区域
output = color_image.copy()
for p in regions:hull = cv2.convexHull(p.reshape(-1, 1, 2))cv2.polylines(output, [hull], 1, (0, 255, 0))cv2.imshow('MSER', output)
cv2.waitKey(0)
cv2.destroyAllWindows()
均值漂移滤波 (pyrMeanShiftFiltering)
# 应用均值漂移滤波
mean_shift_image = cv2.pyrMeanShiftFiltering(color_image, 21, 51)
cv2.imshow('Mean Shift Filtering', mean_shift_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

        这些示例展示了如何使用OpenCV中的各种图像分割函数来处理图像。根据具体的应用需求,可以灵活运用这些函数来实现复杂的图像分割任务。

十六、连通域

        在OpenCV中,连通域分析是图像处理中的一个重要步骤,用于检测和标记图像中的连通区域。主要有两个函数:connectedComponentsconnectedComponentsWithStats。下面介绍这些函数及其使用示例。

连通域分析函数
connectedComponentsconnectedComponentsWithStats
计算连通组件计算连通组件并返回统计信息
计算连通组件 (connectedComponents)
import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('path_to_image.jpg', cv2.IMREAD_GRAYSCALE)# 应用阈值处理
_, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)# 计算连通组件
num_labels, labels = cv2.connectedComponents(binary_image)# 显示结果
label_hue = np.uint8(179 * labels / np.max(labels))
blank_ch = 255 * np.ones_like(label_hue)
labeled_img = cv2.merge([label_hue, blank_ch, blank_ch])# 转换到BGR颜色空间
labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR)# 设置背景为黑色
labeled_img[label_hue == 0] = 0cv2.imshow('Connected Components', labeled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
计算连通组件并返回统计信息 (connectedComponentsWithStats)
# 计算连通组件及统计信息
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_image)# 输出每个连通组件的统计信息
for i in range(num_labels):print(f"Component {i}:")print(f"  Bounding box: {stats[i, cv2.CC_STAT_LEFT]}, {stats[i, cv2.CC_STAT_TOP]}, "f"{stats[i, cv2.CC_STAT_WIDTH]}, {stats[i, cv2.CC_STAT_HEIGHT]}")print(f"  Area: {stats[i, cv2.CC_STAT_AREA]}")print(f"  Centroid: {centroids[i]}")# 显示结果
label_hue = np.uint8(179 * labels / np.max(labels))
blank_ch = 255 * np.ones_like(label_hue)
labeled_img = cv2.merge([label_hue, blank_ch, blank_ch])# 转换到BGR颜色空间
labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR)# 设置背景为黑色
labeled_img[label_hue == 0] = 0cv2.imshow('Connected Components with Stats', labeled_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
解释
  • connectedComponents:此函数返回连通组件的数量和每个像素所属的标签。
  • connectedComponentsWithStats:此函数除了返回标签外,还返回每个连通组件的统计信息(如边界框、面积)和重心。

        这些示例展示了如何使用OpenCV中的连通域分析函数来处理图像。根据具体的应用需求,可以灵活运用这些函数来实现复杂的连通域检测和分析任务。

http://www.ds6.com.cn/news/78052.html

相关文章:

  • 广州越秀建网站国际新闻消息
  • 阀门网站设计重庆seo霸屏
  • 谷歌网站收录入口如何优化网页
  • ip分享网站国内新闻热点事件
  • 东莞网站制作网站绍兴seo优化
  • 昆明的房产网站建设武汉最新疫情
  • 中国最顶尖的服装设计公司广西网站seo
  • 关于省钱的网站名字幽默软文广告经典案例
  • 河源做网站谷歌下载官方正版
  • 有什么软件可以做网站百度引擎的搜索方式是什么
  • 公司网站可以自己做么软文写作网站
  • 网站建设搜索93es.com企业官网
  • vs做asp网站怎样做线上销售
  • 那个做动态表情包的网站建站推广
  • 网站如何管理销售怎么做
  • 乌鲁木齐网站技术服务电话广州关键词排名推广
  • 网站建设实现用户登录开网店怎么开 新手无货源
  • 广州佛山app网站商城制作网站制作免费
  • 免费商城建站搜索引擎优化的内容包括
  • 如何建设专题网站谷歌广告联盟
  • wordpress统一网站图片大小搜索推广出价多少合适
  • 连云港网站优化做网站的网络公司
  • 猪八戒做网站 纠纷天津seo建站
  • qq怎么做网站客服网站推广在哪好
  • 济南旅游网页设计免费网站seo
  • 天津卓信软件开发有限公司青岛seo整站优化哪家专业
  • 无锡网络公司无锡网站设计零基础学什么技术好
  • 建站网站图片不显示写软文一篇多少钱合适
  • 个人帮忙做网站吗seo搜索引擎优化教程
  • seo能干一辈子吗站外seo是什么