当前位置: 首页 > news >正文

怎么做免费网站推广搜索推广平台有哪些

怎么做免费网站推广,搜索推广平台有哪些,h5做网站,渭南网站建设推广注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过&…

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过,同时对于书上部分章节也做了整合。

Chapter7 Modern Convolutional Neural Networks

7.6 Residual Networks(ResNet)

随着我们设计越来越深的网络,深刻理解“新添加的层如何提升神经网络的性能”变得至关重要。

7.6.1 Function Class

首先,假设有一类特定的神经网络架构 F \mathcal{F} F,它包括学习速率和其他超参数设置。对于所有 f ∈ F f \in \mathcal{F} fF,存在一些参数集(例如权重和偏置),这些参数可以通过在合适的数据集上进行训练而获得。现在假设 f ∗ f^* f是我们真正想要找到的函数,如果是 f ∗ ∈ F f^* \in \mathcal{F} fF,那我们可以轻而易举的训练得到它,但通常我们不会那么幸运。我们将尝试找到一个函数 f F ∗ f^*_\mathcal{F} fF,这是我们在 F \mathcal{F} F中的最佳选择。例如,给定一个具有 X \mathbf{X} X特性和 y \mathbf{y} y标签的数据集,我们可以尝试通过解决以下优化问题来找到它:

f F ∗ : = a r g m i n f L ( X , y , f ) ,  f ∈ F . f^*_\mathcal{F} := \mathop{\mathrm{argmin}}_f L(\mathbf{X}, \mathbf{y}, f) \text{ , } f \in \mathcal{F}. fF:=argminfL(X,y,f) , fF.

为了得到更近似真正 f ∗ f^* f的函数,唯一合理的可能性是设计一个更强大的架构 F ′ \mathcal{F}' F。换句话说,我们预计 f F ′ ∗ f^*_{\mathcal{F}'} fF f F ∗ f^*_{\mathcal{F}} fF“更近似”。然而,如果 F ⊈ F ′ \mathcal{F} \not\subseteq \mathcal{F}' FF,则无法保证新的体系“更近似”。事实上, f F ′ ∗ f^*_{\mathcal{F}'} fF可能更糟:如下图所示,对于非嵌套函数(non-nested function)类,较复杂的函数类并不总是向“真”函数 f ∗ f^* f靠拢(复杂度由 F 1 \mathcal{F}_1 F1 F 6 \mathcal{F}_6 F6递增)。在下图的左边,虽然 F 3 \mathcal{F}_3 F3 F 1 \mathcal{F}_1 F1更接近 f ∗ f^* f,但 F 6 \mathcal{F}_6 F6却离的更远了。相反,对于下图右边的嵌套函数(nested function)类 F 1 ⊆ … ⊆ F 6 \mathcal{F}_1 \subseteq \ldots \subseteq \mathcal{F}_6 F1F6,我们可以避免上述问题。
在这里插入图片描述

因此,只有当较复杂的函数类包含较小的函数类时,我们才能确保提高它们的性能。对于深度神经网络,如果我们能将新添加的层训练成恒等映射(identity function) f ( x ) = x f(\mathbf{x}) = \mathbf{x} f(x)=x,新模型和原模型将同样有效。同时,由于新模型可能得出更优的解来拟合训练数据集,因此添加层似乎更容易降低训练误差。针对这一问题,何恺明等人提出了残差网络(ResNet)。其核心思想是:每个附加层都应该更容易地包含原始函数作为其元素之一。于是,残差块(residual blocks)便诞生了,这个设计对如何建立深层神经网络产生了深远的影响。

7.6.2 Residual Blocks

在这里插入图片描述

如上图所示,假设我们的原始输入为 x x x,而希望学出的理想映射为 f ( x ) f(\mathbf{x}) f(x)。上图左边是一个正常块,虚线框中的部分需要直接拟合出该映射 f ( x ) f(\mathbf{x}) f(x),而右边是ResNet的基础架构–残差块(residual block),虚线框中的部分则需要拟合出残差映射 f ( x ) − x f(\mathbf{x}) - \mathbf{x} f(x)x。残差映射在现实中往往更容易优化。以恒等映射作为理想映射 f ( x ) f(\mathbf{x}) f(x),只需将上图右边虚线框内上方的加权运算(如仿射)的权重和偏置参数设成0,那么 f ( x ) f(\mathbf{x}) f(x)即为恒等映射。实际上,当理想映射 f ( x ) f(\mathbf{x}) f(x)极接近于恒等映射时,残差映射也易于捕捉恒等映射的细微波动。在残差块中,输入可通过跨层数据线路更快地向前传播,且可以避免某些梯度消失或梯度爆炸的问题。

在这里插入图片描述

ResNet沿用了VGG完整的 3 × 3 3\times 3 3×3卷积层设计。残差块里首先有2个有相同输出通道数的 3 × 3 3\times 3 3×3卷积层,每个卷积层后接一个批量规范化层和ReLU激活函数,然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。如果想改变通道数,就需要引入一个额外的 1 × 1 1\times 1 1×1卷积层来将输入变换成需要的形状后再做相加运算。

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
import matplotlib.pyplot as pltclass Residual(nn.Module):  #@savedef __init__(self, input_channels,num_channels,use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels,kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels,kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels,kernel_size=1, stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)

如下图所示,此代码生成两种类型的网络:当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出;当use_1x1conv=True时,使用 1 × 1 1 \times 1 1×1卷积调整通道和分辨率。

在这里插入图片描述

blk = Residual(3,3)#输入和输出形状一致
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
print(Y.shape)blk = Residual(3,6, use_1x1conv=True, strides=2)#增加输出通道数的同时,减半输出的高和宽
print(blk(X).shape)#定义ResNet的模块
#b2-b5各有4个卷积层(不包括恒等映射的1x1卷积层),加上第一个7x7卷积层和最后一个全连接层,共有18层,因此这种模型通常被称为ResNet-18
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))def resnet_block(input_channels, num_channels, num_residuals,first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels,use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blkb2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(), nn.Linear(512, 10))X = torch.rand(size=(1, 1, 224, 224))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
plt.show()

训练结果:
在这里插入图片描述

http://www.ds6.com.cn/news/7684.html

相关文章:

  • 万户 网站建设模板建站常规流程
  • 区块链网站可以做哪些活动搜索关键词优化服务
  • 书画院网站建设方案seo学校培训
  • 做网站哪家服务器好百度指数特点
  • 医药公司网站建设方案网络宣传的好处
  • 我的网站 dedecms搜索引擎优化的基本内容
  • 黑龙江省建设网官方网站外贸电商平台哪个网站最好
  • 扬州网站建设在线bt磁力搜索
  • wap网站后台模板如何网站优化排名
  • 怎样在工商网站做遗失软文推广多少钱
  • 平度做网站百度服务中心人工客服电话
  • 网站开发整体流程媒体公关是做什么的
  • 深圳自己做网站成都seo外包
  • 怎样在工商局网站上做变更西地那非片能延时多久有副作用吗
  • 网站建设外文文献关键词优化seo优化
  • 福州网站设计哪家比较好百度资源站长平台
  • asp.net网站开发基础免费刷赞网站推广qq免费
  • 株洲网站建设报价方案免费游戏推广平台
  • 福建建筑人才服务中心档案百度seo排名公司
  • 十大高端网站设计武汉seo网络优化公司
  • 广州做网站海珠新科谷歌搜索引擎香港入口
  • 网站dns解析设置站长之家工具高清
  • 新手建什么网站赚钱吗seo薪酬水平
  • wordpress图片浏览器网站关键词优化排名推荐
  • 网站测试的目的和意义数字营销策略有哪些
  • 北京移动网站建设公司百度推广登陆网址
  • 北京网站建设seo优化百度推广步骤
  • 网站做cnzz流量统计万能bt搜索引擎网站
  • 佛山网站建设推广百度引流推广怎么做
  • 做分类信息网站代码淘宝指数