当前位置: 首页 > news >正文

做网站挣钱的人广告推广系统

做网站挣钱的人,广告推广系统,h5 网站建设,网站开发程序流程图目录 一、CNN概述 二、图像基础知识 三、卷积层 3.1 卷积的计算 3.2 Padding 3.3 Stride 3.4 多通道卷积计算 3.5 多卷积核卷积计算 3.6 特征图大小计算 3.7 Pytorch 卷积层API 四、池化层 4.1 池化计算 4.2 Stride 4.3 Padding 4.4 多通道池化计算 4.5 Pytorc…

目录

一、CNN概述

二、图像基础知识

三、卷积层

3.1 卷积的计算

3.2 Padding

3.3 Stride

3.4 多通道卷积计算

3.5 多卷积核卷积计算

3.6 特征图大小计算

3.7 Pytorch 卷积层API

四、池化层

4.1 池化计算

4.2 Stride

4.3 Padding

4.4 多通道池化计算

4.5 Pytorch 池化层API


一、CNN概述

卷积神经网络是深度学习在计算机视觉领域的突破性成果。在计算机视觉领域,往往输入图像都很大,若使用全连接网络,计算代价较高。图像也很难保留原有的特征,导致图像处理的准确率不高

卷积神经网络(Convolutional Neural Network)是含有卷积层的神经网络。卷积层的作用就是用来自动学习、提取图像的特征

CNN网络主要有三部分构成:卷积层、池化层和全连接层构成,其中卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维);全连接层用来输出想要的结果

二、图像基础知识

图像是由像素点组成的,每个像素点的值范围为[0, 255],像素值越大意味着较亮。一张 200x200 的图像,则是由 40000 个像素点组成,若每个像素点都是 0,意味着这是一张全黑的图像

彩色图一般都是多通道的图像,所谓多通道可以理解为图像由多个不同的图像层叠加而成。平常的彩色图像一般都是由 RGB 三个通道组成的,还有一些图像具有 RGBA 四个通道,最后一个通道为透明通道,该值越小,则图像越透明

import numpy as np
import matplotlib.pyplot as pltdef test01():# 构建200 * 200, 像素值全为0的图像image = np.zeros([200, 200])plt.imshow(image, cmap='gray', vmin=0, vmax=255)plt.show()# 构建200 * 200, 像素值全为255的图像image = np.full([200, 200], 255)plt.imshow(image, cmap='gray', vmin=0, vmax=255)plt.show()def test02():image = plt.imread('data/彩色图片.png')print(image.shape)# (640, 640, 4) 图像为 RGBA 四通道# 修改数据的维度, 将通道维度放在第一位image = np.transpose(image, [2, 0, 1])# 打印所有通道for channel in image:print(channel)plt.imshow(channel)plt.show()# 修改透明度image[3] = 0.05image = np.transpose(image, [1, 2, 0])plt.imshow(image)plt.show()if __name__ == "__main__":test01()test02()

三、卷积层

3.1 卷积的计算

  1. input 表示输入的图像
  2. filter 表示卷积核, 也叫做滤波器
  3. input 经过 filter 的得到输出为最右侧的图像,即特征图

卷积运算本质上就是在滤波器和输入数据的局部区域间做点积

左上角的点计算方法:

按照上面的计算方法可以得到最终的特征图为:

3.2 Padding

通过上面的卷积计算过程,最终的特征图会比原始图像小很多,若想要保持经过卷积后的图像大小不变,可以在原图周围添加 padding 再进行卷积来实现

3.3 Stride

按照步长为1来移动卷积核,计算特征图如下所示:

若将 Stride 增大为2,也是可以提取特征图的,如下图所示:

3.4 多通道卷积计算

实际中的图像都是多个通道组成的

计算方法如下:

  1. 当输入有多个通道(Channel),如 RGB 三个通道,此时要求卷积核需要拥有相同的通道数
  2. 每个卷积核通道与对应的输入图像的各个通道进行卷积
  3. 将每个通道的卷积结果按位相加得到最终的特征图

3.5 多卷积核卷积计算

实际对图像进行特征提取时,需要使用多个卷积核进行特征提取。可以理解为从不同到的视角、不同的角度对图像特征进行提取

3.6 特征图大小计算

输出特征图的大小与以下参数息息相关:

  1. size:卷积核大小,一般会选择为奇数,如:1*1,3*3,5*5*
  2. Padding:零填充的方式
  3. Stride:步长

那计算方法如下图所示:

  1. 输入图像大小:W * W
  2. 卷积核大小: F * F
  3. Stride:S
  4. Padding:P
  5. 输出图像大小:N x N

样例

  1. 图像大小:5 * 5
  2. 卷积核大小:3 * 3
  3. Stride:1
  4. Padding:1
  5. (5 - 3 + 2) / 1 + 1 = 5,即得到的特征图大小为:5 * 5

3.7 Pytorch 卷积层API

import torch
import torch.nn as nn
import matplotlib.pyplot as pltdef show(image):plt.imshow(image)plt.axis('off')plt.show()# 单个多通道卷积核
def test01():# 读取图片, 形状(640, 640, 4) HWCimage = plt.imread('data/彩色图片.png')show(image)# 构建卷积层conv = nn.Conv2d(in_channels=4, out_channels=1, kernel_size=3, stride=1, padding=1)# 卷积层对输入数据的形状有要求,(batch_size, channel, height, weight)image = torch.tensor(image).permute(2, 0, 1)image = image.unsqueeze(0)print(image.shape)# 输入output_image = conv(image)print(output_image.shape)# 调整形状为正常图像形状output_image = output_image.squeeze(0).permute(1, 2, 0)show(output_image.detach().numpy())# 多个多通道卷积核
def test02():# 读取图片, 形状(640, 640, 4) HWCimage = plt.imread('data/彩色图片.png')show(image)# 构建卷积层# 由于out_channels为3, 相当于有3个4通道卷积核conv = nn.Conv2d(in_channels=4, out_channels=3, kernel_size=3, stride=1, padding=1)# 卷积层对输入数据的形状有要求,(batch_size, channel, height, weight)image = torch.tensor(image).permute(2, 0, 1)image = image.unsqueeze(0)# 输入output_image = conv(image)print(output_image.shape)# 调整形状为正常图像形状output_image = output_image.squeeze(0).permute(1, 2, 0)print(output_image.shape)# 打印三个特征图# 每组卷积核的参数不同, 在与输入图像进行卷积运算时会提取出不同的特征信息show(output_image[:, :, 0].unsqueeze(2).detach().numpy())show(output_image[:, :, 1].unsqueeze(2).detach().numpy())show(output_image[:, :, 2].unsqueeze(2).detach().numpy())if __name__ == "__main__":test01()test02()

四、池化层

池化层 (Pooling) 降低维度,缩减模型大小,提高计算速度。主要对卷积层学习到的特征图进行下采样(SubSampling)处理

池化层主要有两种:最大池化、平均池化

4.1 池化计算

最大池化:

  1. max(0,1,3,4)
  2. max(1,2,4,5)
  3. max(3,4,6,7)
  4. max(4,5,7,8)

平均池化:

  1. mean(0,1,3,4)
  2. mean(1,2,4,5)
  3. mean(3,4,6,7)
  4. mean(4,5,7,8)

4.2 Stride

最大池化:

  1. max(0,1,4,5)
  2. max(2,3,6,7)
  3. max(8,9,12,13)
  4. max(10,11,14,15)

平均池化:

  1. mean(0,1,4,5)
  2. mean(2,3,6,7)
  3. mean(8,9,12,13)
  4. mean(10,11,14,15)

4.3 Padding

最大池化:

  1. max(0,0,0,0)
  2. max(0,0,0,1)
  3. max(0,0,1,2)
  4. max(0,0,2,0)
  5. ... 以此类推

平均池化:

  1. mean(0,0,0,0)
  2. mean(0,0,0,1)
  3. mean(0,0,1,2)
  4. mean(0,0,2,0)
  5. ... 以此类推

4.4 多通道池化计算

在处理多通道输入数据时,池化层对每个输入通道分别池化,而不是像卷积层那样将各个通道的输入相加。这意味着池化层的输出和输入的通道数是相等

即:卷积会改变通道数,池化不会改变通道数

4.5 Pytorch 池化层API

import torch
import torch.nn as nn# 基本使用
def test01():inputs = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]).float()inputs = inputs.unsqueeze(0).unsqueeze(0)# (1,1,3,3)print(inputs.shape)# 最大池化, 输入形状(batch_size, channel, height, weight)polling = nn.MaxPool2d(kernel_size=2, stride=1, padding=0)output = polling(inputs)print(output)# 平均池化polling = nn.AvgPool2d(kernel_size=2, stride=1, padding=0)output = polling(inputs)print(output)# stride
def test02():inputs = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]).float()inputs = inputs.unsqueeze(0).unsqueeze(0)# 最大池化, 输入形状(batch_size, channel, height, weight)polling = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)output = polling(inputs)print(output)# 平均池化polling = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)output = polling(inputs)print(output)# padding
def test03():inputs = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]).float()inputs = inputs.unsqueeze(0).unsqueeze(0)# 最大池化, 输入形状(batch_size, channel, height, weight)polling = nn.MaxPool2d(kernel_size=2, stride=1, padding=1)output = polling(inputs)print(output)# 平均池化polling = nn.AvgPool2d(kernel_size=2, stride=1, padding=1)output = polling(inputs)print(output)# 多通道池化
def test04():inputs = torch.tensor([[[0, 1, 2], [3, 4, 5], [6, 7, 8]],[[10, 20, 30], [40, 50, 60], [70, 80, 90]],[[11, 22, 33], [44, 55, 66], [77, 88, 99]]]).float()inputs.unsqueeze(0)# 最大池化, 输入形状(batch_size, channel, height, weight)polling = nn.MaxPool2d(kernel_size=2, stride=1, padding=0)output = polling(inputs)print(output)# 平均池化polling = nn.AvgPool2d(kernel_size=2, stride=1, padding=0)output = polling(inputs)print(output)if __name__ == "__main__":# test01()# test02()# test03()test04()

http://www.ds6.com.cn/news/68400.html

相关文章:

  • 电子商务网站建设与管理相关文献进入百度官网首页
  • 浪网站制作seo确定关键词
  • 做网站要多大空间百度明星搜索量排行榜
  • 手机膜 东莞网站建设搜什么关键词你都懂的
  • 广东网站制作平台seo搜索引擎优化试题及答案
  • 广东做网站公司有哪些百度竞价推广常用到的工具
  • 电子商务平台中搜索词拆解包括seo排名诊断
  • 北京做网站找哪家好公司建网站需要多少钱
  • 北京网站建设哪家好怎么找到当地的微信推广
  • 苹果电脑可以做网站吗软文推广营销平台
  • 女生做网站编辑好吗网站长尾关键词排名软件
  • 装修设计费收费标准2022页面seo优化
  • 学校文化建设聚奇网站我想在百度上发布广告怎么发
  • 网站的标志可以修改吗网站如何推广营销
  • 网站 psd南宁百度seo公司
  • 培训网站建设方案模板下载宁波受欢迎全网seo优化
  • 商城网站设计教程百度网页翻译
  • html怎么做商品页面苏州关键词seo排名
  • 网站ftp的所有权归谁上海全网营销推广
  • 怎么做律所的官方网站手机网络优化
  • 九度网站建设百度快照优化seo
  • 郑州最好的品牌策划公司上海企业网站seo
  • wordpress 图片说明西安seo报价
  • 网站制作遨游免费海南百度推广电话
  • 分销网站制作条件精准客户数据采集软件
  • 微网站建设完不知道怎么推广咋办全球疫情今天最新消息
  • 网站怎样建设友情链接seo是什么服务
  • 相亲网站拉人做基金国外搜索引擎优化
  • 温州seo关键词排名优化公司哪家效果好
  • 人大网站建设报价单百度竞价推广开户费用