当前位置: 首页 > news >正文

大连住房和建设局网站营销培训课程

大连住房和建设局网站,营销培训课程,洛阳百事通文化传播有限公司,长沙中小企业做网站借鉴了这个博主的ViT Patch Embedding理解-CSDN博客,再加了一些理解。 就通过代码来理解吧 假设输入图像的维度为HxWxC,分别表示高,宽和通道数。 PatchEmbed 的类,它继承了 nn.Module,实现了将输入的2维图像&#…

借鉴了这个博主的ViT Patch Embedding理解-CSDN博客,再加了一些理解。

就通过代码来理解吧 

假设输入图像的维度为HxWxC,分别表示高,宽和通道数。

PatchEmbed 的类,它继承了 nn.Module,实现了将输入的2维图像(3通道)分割为多个小块(patches)(若干个不重叠的 patch),并将每个小块映射到特定维度的嵌入(embedding)向量空间中。该类的核心思想是将输入的图像划分为固定大小的 patch,并通过卷积操作将这些 patch 转换为1维向量(embedding,经过编码的图像块)(线性变换)。

class PatchEmbed(nn.Module):"""Image to Patch Embedding 得到的是经过编码的图片块"""def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):super().__init__()img_size = (img_size, img_size)patch_size = (patch_size, patch_size)num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])self.img_size = img_sizeself.patch_size = patch_sizeself.num_patches = num_patches# # embed_dim表示切好的图片拉成一维向量后的特征长度# # 图像共切分为N = HW/P^2个patch块# 在实现上等同于对reshape后的patch序列进行一个PxP且stride为P的卷积操作# output = {[(n+2p-f)/s + 1]向下取整}^2# 即output = {[(n-P)/P + 1]向下取整}^2 = (n/P)^2# self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)def forward(self, x):B, C, H, W = x.shapeassert H == self.img_size[0] and W == self.img_size[1], \f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."x = self.proj(x).flatten(2).transpose(1, 2)return x  # x.shape is [8, 196, 768]

1.__init__ 构造函数:

  • img_size=224: 输入图像的尺寸是 224x224。
  • patch_size=16: 将图像划分成 16x16 的小块(patch)。每个 patch 是一个三通道的小图像块。
  • in_chans=3: 表示输入图像的通道数为 3(通常为 RGB 图像)。
  • embed_dim=768: 每个 patch 最终会被映射到 768 维的向量空间(768组 3通道的卷积核,原来的一个图像块patch(3通道)映射成特征图的一个像素点(值),768 就是提取了768种特征 然后将一个像素点映射到768维的特征空间)。输入的图像有 3 个通道(RGB 图像),每个卷积核都有 3 个通道的权重(滤波器)。每个 16x16 大小的 patch 经过一个卷积核,会被映射为一个单一的数值。每个 patch 被 768 个卷积核处理后得到了 768 个数值,这 768 个数值表示该 patch 在不同卷积核下的特征响应。这些特征数值构成了一个 768 维的向量,这意味着这个 patch 被映射到了 768 维的特征空间中。这些特征表示包括局部区域的颜色、纹理、边缘等信息,卷积核通过不断学习会提取出对任务有用的特征。
  • num_patches: 计算图像中有多少个 patch,即 (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])对于 224x224 的图像和 16x16 的 patch,它将产生 14x14 = 196 个 patch。

        卷积层 (self.proj

这一步使用一个二维卷积层来对图像进行 patch 的切分和 embedding 的生成。

  • kernel_size=patch_size: 卷积核的大小与 patch 的大小相同(16x16)。
  • stride=patch_size: 卷积的步长也是 16,因此卷积会以 16x16 的步幅滑动,即每次滑动的距离正好等于一个 patch 的大小。

这相当于将图像按块切分,并将每个 patch 通过卷积操作投影到 embed_dim 维的特征空间。

2. forward 函数

  • 输入 x 的维度为 (B, C, H, W),其中 B 是 batch size,C 是通道数(例如 3 个 RGB 通道),HW 是图像的高度和宽度。
  • assert 语句确保输入的图像大小符合预期的尺寸 self.img_size,否则抛出异常。
  • self.proj(x) 通过卷积层将图像切分为 patch 并生成嵌入。
  • flatten(2) 将特征图的第三维和第四维(height 和 width,其实是那个(img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])=num_patches)展平为一维,以便于后续处理。
  • transpose(1, 2) 交换维度,使得输出的形状为 [batch_size, num_patches, embed_dim(通道数线性变换了3→768)],即每个 batch 中的每个 patch 都有一个 embed_dim 维的嵌入向量。

输出形状

输出的形状为 [8, 196, 768]

  • 8 表示 batch size。
  • 196 表示图像被分割成 196 个 patch。
  • 768 是每个 patch 被映射到的嵌入维度。

总结来说,这个类的功能是将输入图像通过卷积的方式分割成多个固定大小的 patch,并将每个 patch 转换为一个高维特征表示(其中 卷积核的主要作用是将图像切分成固定大小的 patch,同时也会进行一定的特征提取。这种操作不仅分割图像,还通过卷积层(768)对每个 patch 进行线性变换,将其映射到一个特征空间),用于后续处理。

卷积核通过学习不同的权重,能够提取出局部区域内的边缘、纹理、颜色等特征。

卷积核的初始化很重要,它会影响模型的收敛速度和最终效果。有几种常见的初始化方法.

Xavier 初始化(Glorot 初始化)

  • 这个方法根据输入和输出的神经元数量来初始化权重,以确保输入和输出的方差相同,避免梯度消失或爆炸。
  • 常用于 sigmoid 或 tanh 激活函数的网络。

为什么要进行特征提取?

在分块的同时进行特征提取的原因是,直接将图像的原始像素输入给后续的 transformer 模块并不能有效地捕捉局部结构。而卷积核能够提取局部的空间特征(如边缘、颜色、纹理等),从而帮助后续的 transformer 模块更好地捕捉全局信息。

http://www.ds6.com.cn/news/67498.html

相关文章:

  • 广州网站建设加q479185700seo和sem是什么
  • 工厂办公室装修设计小程序seo推广技巧
  • 36氪网站用什么程序做的百度地图在线使用
  • 做网站数据库多少钱南昌seo推广
  • 整站优化网站报价广告推广计划
  • thinkphp 微网站开发品牌营销案例分析
  • 河北企业网站建设技术百度快照怎么做
  • 金融网站制作全球网站访问量排名
  • 网站关键词策略爱站权重查询
  • 网站建设用图片百度培训
  • 高端网站建设专业电商培训班
  • 站群网站程序百度网盘首页
  • qq上网站做我女朋友站长之家ping检测
  • 企业品牌网站建设价格黄冈网站推广策略
  • 软件公司网站建设淘宝指数
  • 不记得在哪里做的网站备案游戏推广是干什么的
  • 时尚网站欣赏网络关键词优化方法
  • 太原网站seo交换链接案例
  • 建设厅国网查询网站优化网站排名技巧
  • 大连在哪儿百度seo公司哪家最好
  • 云南省网站备案网络口碑营销名词解释
  • 贵州建设职业学院官方网站优化大师手机版
  • 高端网站设计合肥网站建设百度首页纯净版怎么设置
  • 在县城做商城网站seo优化查询
  • 网站名称意义石家庄网络推广优化
  • 沈阳商城网站建设百度帐号登录入口
  • 怎么查网站是哪家制作公司做的关键字排名查询工具
  • 企业网站 价格腾讯企点官网
  • 学校网站建设具体分工大兵seo博客
  • 东阿网站制作优化网站推广教程整站