当前位置: 首页 > news >正文

做汇算清缴在哪个网站下百度推广登录入口官网

做汇算清缴在哪个网站下,百度推广登录入口官网,网站制作xiu021,如何做网站卖商品的网站使用Horizontal Pod Autoscaler (HPA) 实验目标: 学习如何使用 HPA 实现自动扩展。 实验步骤: 创建一个 Deployment,并设置 CPU 或内存的资源请求。创建一个 HPA,设置扩展策略。生成负载,观察 HPA 如何自动扩展 Pod…

使用Horizontal Pod Autoscaler (HPA)

实验目标:
学习如何使用 HPA 实现自动扩展。

实验步骤:

  • 创建一个 Deployment,并设置 CPU 或内存的资源请求。
  • 创建一个 HPA,设置扩展策略。
  • 生成负载,观察 HPA 如何自动扩展 Pod 数量。

今天继续我们k8s未做完的实验:如何使用 HPA 实现自动扩展

创建

1、创建namespace

kubectl create namespace nginx-hpa

2、创建deployment

# /kubeapi/data/project5/nginx-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:name: nginx-hpa
spec:replicas: 1selector:matchLabels:app: nginx-hpatemplate:metadata:labels:app: nginx-hpaspec:containers:- name: nginx-hpaimage: nginx:1.18ports:- containerPort: 80resources:requests:cpu: "10m"limits:cpu: "20m"

应用此Deployment

kubectl apply -f nginx-hpa.yaml

顺带创建一下service

kubectl create service nodeport nginx-hpa --tcp=80:80 -n nginx-hpa

3、创建HPA

# /kubeapi/data/project5/nginx-hpa.yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:name: nginx-hpanamespace: nginx-hpa
spec:scaleTargetRef:apiVersion: apps/v1kind: Deploymentname: nginxminReplicas: 1maxReplicas: 10metrics:- type: Resourceresource:name: cputarget:type: UtilizationaverageUtilization: 1

应用此HPA:

kubectl apply -f nginx-hpa.yaml

在这里插入图片描述

4、生成负载以观察自动扩展效果

从上边的图片我们可以看到,hpa实际并没有获取到资源的使用率
这里我们先安装一下 Metrics Server

curl -LO https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml

编辑 components.yaml ,建议直接复制,替换掉之前的文件内容。需要修改的地方我都有标注

需要替换的原因就是:Metrics Server 遇到的主要问题是无法验证节点证书的 x509 错误,因为节点的证书中不包含任何 IP SANs(Subject Alternative Names)。这是一个常见的问题,尤其是在使用自签名证书的 Kubernetes 集群中。为了解决这个问题,可以调整 Metrics Server 的配置,使其忽略证书验证

apiVersion: v1
kind: ServiceAccount
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-serverrbac.authorization.k8s.io/aggregate-to-admin: "true"rbac.authorization.k8s.io/aggregate-to-edit: "true"rbac.authorization.k8s.io/aggregate-to-view: "true"name: system:aggregated-metrics-reader
rules:
- apiGroups:- metrics.k8s.ioresources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-servername: system:metrics-server
rules:
- apiGroups:- ""resources:- nodes/metricsverbs:- get
- apiGroups:- ""resources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server-auth-readernamespace: kube-system
roleRef:apiGroup: rbac.authorization.k8s.iokind: Rolename: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server:system:auth-delegator
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:auth-delegator
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: system:metrics-server
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:metrics-server
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: v1
kind: Service
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:ports:- name: httpsport: 443protocol: TCPtargetPort: httpsselector:k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:selector:matchLabels:k8s-app: metrics-serverstrategy:rollingUpdate:maxUnavailable: 0template:metadata:labels:k8s-app: metrics-serverspec:containers:- args:- --cert-dir=/tmp- --secure-port=10250- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname- --kubelet-use-node-status-port- --metric-resolution=15s- --kubelet-insecure-tls  # 添加此行image: registry.k8s.io/metrics-server/metrics-server:v0.7.1imagePullPolicy: IfNotPresentlivenessProbe:failureThreshold: 3httpGet:path: /livezport: httpsscheme: HTTPSperiodSeconds: 10name: metrics-serverports:- containerPort: 10250name: httpsprotocol: TCPreadinessProbe:failureThreshold: 3httpGet:path: /readyzport: httpsscheme: HTTPSinitialDelaySeconds: 20periodSeconds: 10resources:requests:cpu: 100mmemory: 200MisecurityContext:allowPrivilegeEscalation: falsecapabilities:drop:- ALLreadOnlyRootFilesystem: truerunAsNonRoot: truerunAsUser: 1000seccompProfile:type: RuntimeDefaultvolumeMounts:- mountPath: /tmpname: tmp-dirnodeSelector:kubernetes.io/os: linuxpriorityClassName: system-cluster-criticalserviceAccountName: metrics-servervolumes:- emptyDir: {}name: tmp-dir
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:labels:k8s-app: metrics-servername: v1beta1.metrics.k8s.io
spec:group: metrics.k8s.iogroupPriorityMinimum: 100insecureSkipTLSVerify: true  # 确保这一行存在service:name: metrics-servernamespace: kube-systemversion: v1beta1versionPriority: 100

使用命令应用配置文件

kubectl apply -f components.yaml

检查 Metrics Server 部署状态

kubectl get deployment metrics-server -n kube-system
kubectl get pods -n kube-system | grep metrics-server

在这里插入图片描述
这里部署成功后等待一会,我们在检查hpa的状态

kubectl get hpa -n nginx-hpa

发现可以看到负载的数据了
在这里插入图片描述

使用 kubectl run 命令创建一个 Pod 来生成负载:

kubectl run -i --tty load-generator --image=busybox /bin/sh

在 Pod 内运行以下命令生成 CPU 负载:

while true; do wget -q -O- http://10.0.0.5:31047; done

如果中途退出过容器就删掉重新生成

kubectl delete pod load-generator

验证

在生成负载之后,再次检查 HPA 和 nginx 部署的状态
检查hpa,发现负载已经超过了我们限定的值

kubectl get hpa -n nginx-hpa

在这里插入图片描述
检查nginx容器数量,发现自动增加了9个副本。总数是我们配置文件中maxReplicas: 10规定的最多10个容器

kubectl get pods -n nginx-hpa

在这里插入图片描述

关闭负载容器后,当负载不在高出我们所规定的数值后观察pod数量

在这里插入图片描述

这里需要注意的是:
如果负载下降后,HPA 没有按预期缩减 Pod 数量,有可能是配置问题或需要等待一段时间。HPA 的自动缩减行为需要满足一些条件,并且通常有一个冷却时间窗口,以避免频繁扩缩容导致的不稳定性。这个时间窗口默认是5分钟,可以通过以下命令查看配置:

kubectl get hpa nginx-hpa -o yaml -n nginx-hpa

确保没有手动调整 Deployment 副本数,HPA 的调整策略会被手动更改副本数所覆盖。

经过一段时间以后,在观察pod的数量,发现已经自动缩减到1个
在这里插入图片描述


通过以上步骤,你应该能看到 HPA 根据 CPU 使用率自动扩展和缩减 Pod 的数量。最初部署时只有一个 Pod,但在生成负载后,你应该会看到 Pod 的数量增加。当负载减少时,Pod 的数量会再次减少。

我是为了实验效果把HPA触发的值调整的很低,生产中建议根据实际情况调整

http://www.ds6.com.cn/news/67165.html

相关文章:

  • 企业建设网站的作用大不大seo外包优化公司
  • 马克斯网站建设seo建站技巧
  • 做网站需要懂什么软件手机百度账号申请注册
  • 广安哪里有做网站的公司图片外链上传网站
  • 网站上的3d产品展示怎么做seo推广小分享
  • 做营销网站视频安徽网站开发哪家好
  • 网站改造app优化方案
  • 仙居做网站公司班级优化大师免费下载app
  • 大型网站都怎么做推广互联网媒体推广
  • 做网站视频教学windows7系统优化工具
  • 石家庄做网站哪家好2024年2月疫情又开始了吗
  • 天津电商网站开发百度热搜关键词
  • 台州企业网站seo河北seo关键词排名优化
  • 东莞企业官方网站建设seo常用工具网站
  • 西班牙外贸网站重庆优化seo
  • 洞口做网站的公司1688的网站特色
  • 网站适配移动端和PC端安卓优化大师下载安装
  • wordpress github评论班级优化大师官网下载
  • wordpress添加动漫人物谷歌seo是指什么意思
  • 做网站客户要求分期郑州互联网公司排名
  • 可以做短信炸弹的网站23岁老牌网站
  • 宁波哪里可以做网站头条搜索是百度引擎吗
  • 平度网站建设ld4网络营销方式有哪些
  • wordpress 登录跳转广州seo效果
  • 网站的ab测试怎么做广东seo
  • asp.net网站设计分工搜收录网
  • 一级av做爰片不卡免费网站网络推广主要工作内容
  • 阿里云ecs可以做几个网站百度账号注册申请
  • 辽宁平台网站建设哪里好市场营销培训课程
  • 网站开发武汉优化方案官网