当前位置: 首页 > news >正文

wordpress seo title福州seo按天付费

wordpress seo title,福州seo按天付费,网页网络优化,广平专业做网站动手学习RAG: 向量模型动手学习RAG: BGE向量模型微调实践]()动手学习RAG: BCEmbedding 向量模型 微调实践]()BCE ranking 微调实践]()GTE向量与排序模型 微调实践]()模型微调中的模型序列长度]()相似度与温度系数 本文我们来进行ColBERT模型的实践,按惯例&#xff…
  • 动手学习RAG: 向量模型
  • 动手学习RAG: BGE向量模型微调实践]()
  • 动手学习RAG: BCEmbedding 向量模型 微调实践]()
  • BCE ranking 微调实践]()
  • GTE向量与排序模型 微调实践]()
  • 模型微调中的模型序列长度]()
  • 相似度与温度系数

本文我们来进行ColBERT模型的实践,按惯例,还是以open-retrievals中的代码为蓝本。在RAG兴起之后,ColBERT也获得了更多的关注。ColBERT整体结构和双塔特别相似,但迟交互式也就意味着比起一般ranking模型,交互来的更晚一些。
请添加图片描述

准备环境

pip install transformers
pip install open-retrievals

准备数据

还是采用C-MTEB/T2Reranking数据。

  • 每个样本有query, positive, negative。其中query和positive构成正样本对,query和negative构成负样本对
    请添加图片描述

使用

由于ColBERT作为迟交互式模型,既可以像向量模型一样生成向量,也可以计算相似度。BAAI/bge-m3中的colbert模型是基于XLMRoberta训练而来,因此使用ColBERT可以直接从bge-m3中加载预训练权重。

import transformers
from retrievals import ColBERT
model_name_or_path: str =  'BAAI/bge-m3' 
model = ColBERT.from_pretrained(model_name_or_path,colbert_dim=1024,    use_fp16=True,loss_fn=ColbertLoss(use_inbatch_negative=True),
)model

请添加图片描述

  • 生成向量的方法
sentences_1 = ["In 1974, I won the championship in Southeast Asia in my first kickboxing match", "In 1982, I defeated the heavy hitter Ryu Long."]
sentences_2 = ['A dog is chasing car.', 'A man is playing a guitar.']output_1 = model.encode(sentences_1, normalize_embeddings=True)
print(output_1.shape, output_1)output_2 = model.encode(sentences_2, normalize_embeddings=True)
print(output_2.shape, output_2)

请添加图片描述

  • 计算句子对 相似度的方法
sentences = [["In 1974, I won the championship in Southeast Asia in my first kickboxing match", "In 1982, I defeated the heavy hitter Ryu Long."],["In 1974, I won the championship in Southeast Asia in my first kickboxing match", 'A man is playing a guitar.'],
]scores_list = model.compute_score(sentences)
print(scores_list)

请添加图片描述

微调

尝试了两种方法来做,一种是调包自己写代码,一种是采用open-retrievals中的代码写shell脚本。这里我们采用第一种,另外一种方法可参考文章最后番外中的微调

import transformers
from transformers import AutoTokenizer, TrainingArguments, get_cosine_schedule_with_warmup, AdamW
from retrievals import AutoModelForRanking, RerankCollator, RerankTrainDataset, RerankTrainer, ColBERT, RetrievalTrainDataset, ColBertCollator
from retrievals.losses import ColbertLoss
transformers.logging.set_verbosity_error()model_name_or_path: str = 'BAAI/bge-m3'learning_rate: float = 1e-5
batch_size: int = 2
epochs: int = 1
output_dir: str = './checkpoints'train_dataset = RetrievalTrainDataset('C-MTEB/T2Reranking', positive_key='positive', negative_key='negative', dataset_split='dev'
)tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)data_collator = ColBertCollator(tokenizer,query_max_length=64,document_max_length=128,positive_key='positive',negative_key='negative',
)
model = ColBERT.from_pretrained(model_name_or_path,colbert_dim=1024,loss_fn=ColbertLoss(use_inbatch_negative=False),
)optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps)training_args = TrainingArguments(learning_rate=learning_rate,per_device_train_batch_size=batch_size,num_train_epochs=epochs,output_dir = './checkpoints',remove_unused_columns=False,gradient_accumulation_steps=8,logging_steps=100,)
trainer = RerankTrainer(model=model,args=training_args,train_dataset=train_dataset,data_collator=data_collator,
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()model.save_pretrained(output_dir)

训练过程中会加载BAAI/bge-m3模型权重
请添加图片描述
损失函数下降
请添加图片描述

{'loss': 7.4858, 'grad_norm': 30.484981536865234, 'learning_rate': 4.076305220883534e-06, 'epoch': 0.6024096385542169}
{'loss': 1.18, 'grad_norm': 28.68316650390625, 'learning_rate': 3.072289156626506e-06, 'epoch': 1.2048192771084336}
{'loss': 1.1399, 'grad_norm': 14.203865051269531, 'learning_rate': 2.068273092369478e-06, 'epoch': 1.8072289156626506}
{'loss': 1.1261, 'grad_norm': 24.30337905883789, 'learning_rate': 1.0642570281124499e-06, 'epoch': 2.4096385542168672}
{'train_runtime': 471.8191, 'train_samples_per_second': 33.827, 'train_steps_per_second': 1.055, 'train_loss': 2.4146631079984, 'epoch': 3.0}

评测

在C-MTEB中进行评测。微调前保留10%的数据集作为测试集验证

from datasets import load_datasetdataset = load_dataset("C-MTEB/T2Reranking", split="dev")
ds = dataset.train_test_split(test_size=0.1, seed=42)ds_train = ds["train"].filter(lambda x: len(x["positive"]) > 0 and len(x["negative"]) > 0
)ds_train.to_json("t2_ranking.jsonl", force_ascii=False)

微调前的指标:
请添加图片描述
微调后的指标:
请添加图片描述

{"dataset_revision": null,"mteb_dataset_name": "CustomReranking","mteb_version": "1.1.1","test": {"evaluation_time": 221.45,"map": 0.6950128151840831,"mrr": 0.8193114944390455}
}

番外:从语言模型直接训练ColBERT

之前的例子里是从BAAI/bge-m3继续微调,这里再跑一个从hfl/chinese-roberta-wwm-ext训练一个ColBERT模型

  • 注意,从头跑需要设置更大的学习率与更多的epochs
MODEL_NAME='hfl/chinese-roberta-wwm-ext'
TRAIN_DATA="/root/kaggle101/src/open-retrievals/t2/t2_ranking.jsonl"
OUTPUT_DIR="/root/kaggle101/src/open-retrievals/t2/ft_out"cd /root/open-retrievals/srctorchrun --nproc_per_node 1 \--module retrievals.pipelines.rerank \--output_dir $OUTPUT_DIR \--overwrite_output_dir \--model_name_or_path $MODEL_NAME \--tokenizer_name $MODEL_NAME \--model_type colbert \--do_train \--data_name_or_path $TRAIN_DATA \--positive_key positive \--negative_key negative \--learning_rate 5e-5 \--bf16 \--num_train_epochs 5 \--per_device_train_batch_size 32 \--dataloader_drop_last True \--query_max_length 128 \--max_length 256 \--train_group_size 4 \--unfold_each_positive false \--save_total_limit 1 \--logging_steps 100 \--use_inbatch_negative False

微调后指标

{"dataset_revision": null,"mteb_dataset_name": "CustomReranking","mteb_version": "1.1.1","test": {"evaluation_time": 75.38,"map": 0.6865308507184888,"mrr": 0.8039965986394558}
}
http://www.ds6.com.cn/news/64674.html

相关文章:

  • 网站建设规划书 百度文库seo网站推广是什么意思
  • 浠水做网站的独立站推广
  • 临沭有做网站的吗网站交易
  • 网站专题制作流程百度联盟官网
  • 中国造价信息网官网成都seo工程师
  • 网站维护的主要内容安卓优化大师下载
  • 北京做胃镜哪好德胜门网站I荥阳网络推广公司
  • 软件产品如何做网站推广广东省广州市佛山市
  • 网站上传大马后怎么做seo关键词排名优
  • 企业网站的规划与建设ppt营销型网站建设服务
  • 建设网站设计重庆高端网站seo
  • 安徽省建设工程信息网官方网站培训
  • 改变网站的域名空间app001推广平台
  • php做的网站怎么打开关键词seo是什么
  • 手机网站开发按返回弹出提示窗口长沙网络推广外包
  • 南宁营销型网站专家seo发帖软件
  • 进入城乡建设网站怎么竣工备案谷歌搜索入口
  • 嘉兴注册公司新网站seo外包
  • 做网站需要服务器还是主机江苏seo哪家好
  • 西安网站创建自己如何做链接推广
  • 石家庄网络工作室网站建设广州百度seo 网站推广
  • 网站建设推广运营百度seo软件首选帝搜软件
  • 建设的网站属于固定资产么厦门关键词seo排名网站
  • 个人业务网站建设市场营销模式有哪些
  • 柳市做网站建设互联网推广公司靠谱吗
  • java做网站开发成本高免费b站推广
  • 版面设计网站北京网站优化
  • 邢台做移动网站哪儿好百度推广账户登录首页
  • 茂名网站开发深圳关键词排名seo
  • 建一个电商网站要多少钱软文广告素材