当前位置: 首页 > news >正文

WordPress地址不能修改seo入门视频

WordPress地址不能修改,seo入门视频,咸阳b2c网站制作价格,大屏首页滚动网站源码生成对抗神经网络GAN,发挥神经网络的想象力,可以说是十分厉害了 参考 1、AI作家 2、将模糊图变清晰(去雨,去雾,去抖动,去马赛克等),这需要AI具有“想象力”,能脑补情节; 3、进行数…

生成对抗神经网络GAN,发挥神经网络的想象力,可以说是十分厉害了

参考

1、AI作家
2、将模糊图变清晰(去雨,去雾,去抖动,去马赛克等),这需要AI具有“想象力”,能脑补情节;
3、进行数据增强,根据已有数据生成更多新数据供以feed,可以减缓模型过拟合现象。

那到底是怎么实现的呢?


GAN中有两大组成部分G和D

G是generator,生成器: 负责凭空捏造数据出来

D是discriminator,判别器: 负责判断数据是不是真数据

示例图如下:

给一个随机噪声z,通过G生成一张假图,然后用D去分辨是真图还是假图。假设G生成了一张图,在D那里的得分很高,那么G就很成功的骗过了D,如果D很轻松的分辨出了假图,那么G的效果不好,那么就需要调整参数了。


G和D是两个单独的网络,那么他们的参数都是训练好的吗?并不是,两个网络的参数是需要在博弈的过程中分别优化的。

下面就是一个训练的过程:

GAN在一轮反向传播中分为两步,先训练D在训练G。

训练D时,上一轮G产生的图片,和真实图片一起作为x进行输入,假图为0,真图标签为1,通过x生成一个score,通过score和标签y计算损失,就可以进行反向传播了。

训练G时,G和D是一个整体,取名为D_on_G。输入随机噪声,G产生一个假图,D去分辨,score = 1就是需要我们需要优化的目标,意思就是我们要让生成的图片变成真的。这里的D是不需要参与梯度计算的,我们通过反向传播来优化G,让他生成更加真实的图片。这就好比:如果你参加考试,你别指望能改变老师的评分标准


GAN无监督学习,(cGAN是有监督的),以后会学习的。怎么理解无监督学习呢?这里给的真图是没有经过人工标注的,只知道这是真的,D是不知道这是什么的,只需要分辨真假。G也不知道生成了什么,只需要学真图去骗D。


具体如何实施呢?

import os
import torch
import torchvision
import torch.nn as nn 
from torchvision import transforms
from torchvision.utils import save_imagedevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
latent_size = 64
hidden_size = 256
image_size = 784
num_epochs = 200
batch_size = 100
sample_dir = 'samples'

注意这里有个归一化的过程,MNIST是单通道,但是如果mean=(0.5,0.5,0.5)会报错,因为是对3通道操作 。

if not os.path.exists(sample_dir):os.makedirs(sample_dir)transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=(0.5,),   # 3 for RGB channelsstd=(0.5,))])# MNIST dataset
mnist = torchvision.datasets.MNIST(root='./data/',train=True,transform=transform,download=True)
# Data loader
data_loader = torch.utils.data.DataLoader(dataset=mnist,batch_size=batch_size, shuffle=True)

定义生成器和判别器:

生成器:可以看到输入的维度为64,是一组噪声图像,通过生成器将特征扩大到了MNIST图像大小784。

判别器:输入维度为图像大小,最后输出特征个数为1,采用sigmoid激活(不用softmax的)

# Discriminator
D = nn.Sequential(nn.Linear(image_size, hidden_size),nn.LeakyReLU(0.2),nn.Linear(hidden_size, hidden_size),nn.LeakyReLU(0.2),nn.Linear(hidden_size, 1),nn.Sigmoid())# Generator 
G = nn.Sequential(nn.Linear(latent_size, hidden_size),nn.ReLU(),nn.Linear(hidden_size, hidden_size),nn.ReLU(),nn.Linear(hidden_size, image_size),nn.Tanh())
# Device setting
D = D.to(device)
G = G.to(device)# Binary cross entropy loss and optimizer
criterion = nn.BCELoss()
d_optimizer = torch.optim.Adam(D.parameters(), lr=0.0002)
g_optimizer = torch.optim.Adam(G.parameters(), lr=0.0002)def denorm(x):out = (x + 1) / 2return out.clamp(0, 1)def reset_grad():d_optimizer.zero_grad()g_optimizer.zero_grad()

 重点看训练部分,我们到底是如何来训练GAN的。

判别器部分:判别器的损失值分为两部分,(一)将mini_batch定义为正样本,告诉他我是正品,所以设置标签为1。优化判别器判断正品的能力;(二)生成一幅赝品,再给判别器判别,这时候赝品的标签为0,优化判断赝品的能力。所以总损失为这两部分之和,计算梯度,优化判别器参数。

G_on_D:输入一个噪声,让生成器生成一幅图像,然后让D去判别,计算和正品之间的距离,即损失。反向传播,优化G的参数。

# Start training
total_step = len(data_loader)
for epoch in range(num_epochs):for i, (images, _) in enumerate(data_loader):images = images.reshape(batch_size, -1).to(device)# Create the labels which are later used as input for the BCE lossreal_labels = torch.ones(batch_size, 1).to(device)fake_labels = torch.zeros(batch_size, 1).to(device)# ================================================================== ##                      Train the discriminator                       ## ================================================================== ## Compute BCE_Loss using real images where BCE_Loss(x, y): - y * log(D(x)) - (1-y) * log(1 - D(x))# Second term of the loss is always zero since real_labels == 1outputs = D(images)d_loss_real = criterion(outputs, real_labels)real_score = outputs# Compute BCELoss using fake images# First term of the loss is always zero since fake_labels == 0z = torch.randn(batch_size, latent_size).to(device)fake_images = G(z)outputs = D(fake_images)d_loss_fake = criterion(outputs, fake_labels)fake_score = outputs# Backprop and optimized_loss = d_loss_real + d_loss_fakereset_grad()d_loss.backward()d_optimizer.step()# ================================================================== ##                        Train the generator                         ## ================================================================== ## Compute loss with fake imagesz = torch.randn(batch_size, latent_size).to(device)fake_images = G(z)outputs = D(fake_images)# We train G to maximize log(D(G(z)) instead of minimizing log(1-D(G(z)))# For the reason, see the last paragraph of section 3. https://arxiv.org/pdf/1406.2661.pdfg_loss = criterion(outputs, real_labels)# Backprop and optimizereset_grad()g_loss.backward()g_optimizer.step()if (i+1) % 200 == 0:print('Epoch [{}/{}], Step [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}, D(x): {:.2f}, D(G(z)): {:.2f}' .format(epoch, num_epochs, i+1, total_step, d_loss.item(), g_loss.item(), real_score.mean().item(), fake_score.mean().item()))# Save real imagesif (epoch+1) == 1:images = images.reshape(images.size(0), 1, 28, 28)save_image(denorm(images), os.path.join(sample_dir, 'real_images.png'))# Save sampled imagesfake_images = fake_images.reshape(fake_images.size(0), 1, 28, 28)save_image(denorm(fake_images), os.path.join(sample_dir, 'fake_images-{}.png'.format(epoch+1)))

训练完了怎么用?

只要用我们的生成器就可以随意生成了。

import matplotlib.pyplot as plt
z = torch.randn(1,latent_size).to(device)
output = G(z)
plt.imshow(output.cpu().data.numpy().reshape(28,28),cmap='gray') 
plt.show()

 下面就是随机生成的图像了!

  

http://www.ds6.com.cn/news/61794.html

相关文章:

  • 深圳做网站哪家竞价排名什么意思
  • 泉州网站设计理念培训搜什么关键词能搜到好片
  • 建设网站的费用攀枝花seo
  • pcb计价网站建设手机建站系统
  • 电影网站如何做不侵权电商网站首页
  • 网站开发的职业认知报告找个免费网站这么难吗
  • 国内个人网站搭建网站老域名跳转到新域名
  • 桂林市政府网站官网网站排名优化培训
  • 网站建设实训 考核要求网站seo分析常用的工具是
  • 网站建设公司深圳seo自然优化排名
  • 做兼职哪个网站比较好企业网
  • 微网站设计平台网络服务商在哪咨询
  • wordpress 更新 失败网络优化工程师证书
  • 网站开发文档源码医院营销策略的具体方法
  • 网站建设中 html 下载优化关键词的方法正确的是
  • 如何建一个免费的网站营销渠道方案
  • 搜索引擎排名优化方案seo技术团队
  • 开80服务器怎么做网站百度搜索引擎平台
  • 长沙网站建设电话优化大师电脑版官方免费下载
  • 公司网站建设工作重点网页设计友情链接怎么做
  • 东营政府采购网官网贵州seo推广
  • 东凤镇 网站建设泉州seo技术
  • 无锡建设网站制作重庆网站关键词排名优化
  • 内部网站建设app东莞网络推广代运营
  • 网站开发个人总结百度一下你就知道啦
  • 深圳如何做网站路由优化大师官网
  • 郑州网络公司做医疗网站企业查询app
  • wordpress主题设置插件下载2022最好的百度seo
  • 东莞高端做网站推广公司主要做什么
  • 那些网站专门做棋牌推广的个人网站免费推广