当前位置: 首页 > news >正文

济宁那家做网站最好百度新闻首页

济宁那家做网站最好,百度新闻首页,先做网站装修还是先买虚拟主机,页面设计时最好使用一种颜色XGBoost通常用于训练梯度提升决策树和其他梯度提升模型。随机森林使用与梯度提升决策树相同的模型表示和推断,但使用不同的训练算法。可以使用XGBoost来训练独立的随机森林,或者将随机森林作为梯度提升的基模型。这里我们专注于训练独立的随机森林。 XG…

XGBoost通常用于训练梯度提升决策树和其他梯度提升模型。随机森林使用与梯度提升决策树相同的模型表示和推断,但使用不同的训练算法。可以使用XGBoost来训练独立的随机森林,或者将随机森林作为梯度提升的基模型。这里我们专注于训练独立的随机森林。

XGB从早期开始就有用于训练随机森林的API,而Scikit-Learn在0.82版本之后才有封装。

使用XGBoost API训练独立的随机森林

要启用随机森林训练,必须设置以下参数:

  • booster 应设置为 gbtree,因为正在训练森林。由于这是默认值,通常不需要显式设置此参数。

  • subsample 必须设置为小于 1 的值,以启用对训练样本(行)的随机选择。

  • colsample_by 参数之一必须设置为小于 1 的值,以启用对列的随机选择。通常,colsample_bynode 应设置为小于 1 的值,以在每次树分裂时随机抽样列。

  • num_parallel_tree 应设置为正在训练的森林的大小。

  • num_boost_round 应设置为 1,以防止 XGBoost 提升多个随机森林。请注意,这是train() 的关键字参数,不是参数字典的一部分。

  • 在训练随机森林回归时,应将 eta(别名:learning_rate)设置为 1。

  • random_state 可以用于设置随机数生成器的种子。

其他参数应以类似于梯度提升时设置的方式进行设置。例如,对于回归任务,objective 通常将设置为 reg:squarederror,而对于分类任务,将设置为 binary:logisticlambda 应根据所需的正则化权重进行设置,等等。

如果 num_parallel_treenum_boost_round 都大于 1,则训练将使用随机森林和梯度提升策略的组合。它将执行 num_boost_round 轮,在每一轮中提升 num_parallel_tree 棵树的随机森林。如果未启用提前停止,最终模型将由 num_parallel_tree * num_boost_round 棵树组成。

以下是在 GPU 上使用 xgboost 训练随机森林的示例参数字典:

params = {"colsample_bynode": 0.8,"learning_rate": 1,"max_depth": 5,"num_parallel_tree": 100,"objective": "binary:logistic","subsample": 0.8,"tree_method": "hist","device": "cuda",
}

然后可以按如下方式训练随机森林模型:

bst = train(params, dmatrix, num_boost_round=1)
import xgboost as xgb
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_errordiabetes = load_diabetes()
X = diabetes.data
y = diabetes.target# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# Create a DMatrix for XGBoost
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)# Set parameters for random forest training
params = {"booster": "gbtree","subsample": 0.8,"colsample_bynode": 0.8,"num_parallel_tree": 100,"num_boost_round": 1,"eta": 1,"random_state": 42,"objective": "reg:squarederror",
}# Train the random forest model
model = xgb.train(params, dtrain)# Make predictions on the test set
y_pred = model.predict(dtest)# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")

基于 Scikit-Learn-Like API 实现随机森林

XGBRFClassifierXGBRFRegressor 是类似于 Scikit-Learn 的类,提供了随机森林的功能。 它们基本上是 XGBClassifierXGBRegressor 的版本,用于训练随机森林而不是梯度提升, 并相应地调整了一些参数的默认值和含义。具体来说:

  • n_estimators 指定要训练的森林的大小;它被转换为 num_parallel_tree,而不是 boosting 轮数的数量
  • learning_rate 默认设置为 1
  • colsample_bynodesubsample 默认设置为 0.8
  • booster 始终为 gbtree

例如,可以使用以下代码训练一个随机森林回归器:

from sklearn.model_selection import KFold# Your code ...kf = KFold(n_splits=2)
for train_index, test_index in kf.split(X, y):xgb_model = xgb.XGBRFRegressor(random_state=42).fit(X[train_index], y[train_index])

注意,与使用 train() 相比,这些类的参数选择较少。特别是,使用此 API 无法将随机森林与梯度提升结合起来。

import xgboost as xgb
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from xgboost import XGBRFRegressor
from sklearn.model_selection import KFolddiabetes = load_diabetes()
X = diabetes.data
y = diabetes.targetkf = KFold(n_splits=2)
for train_index, test_index in kf.split(X, y):xgb_model = xgb.XGBRFRegressor(random_state=42).fit(X[train_index], y[train_index])# Make predictions on the test set
y_pred = xgb_model.predict(X_test)# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")

注意事项

  • XGBoost 使用二阶逼近来近似目标函数。这可能导致与使用目标函数的精确值的随机森林实现不同的结果
  • 在子采样训练样本时,XGBoost 不执行替换操作。每个训练案例在子采样集中可能出现 0 次或 1 次

参考

  • https://xgboost.readthedocs.io/en/latest/tutorials/rf.html
http://www.ds6.com.cn/news/58912.html

相关文章:

  • 常州做网站设计网站推广哪个好
  • 贵阳网站开发哪家专业全国各城市疫情搜索高峰进度
  • 深圳网站优化包年软文平台有哪些
  • 促销方案搜索引擎优化关键词的处理
  • 自己做的网站怎么被搜索出来竞价托管代运营多少钱
  • 湘潭高新区建设局网站seo公司厦门
  • 网站代码开发文档模板上海营销公司
  • 网站建设组织西安seo哪家好
  • 网站运行环境配置武汉百度推广公司
  • 做外贸的都有哪些网站提升关键词排名软件哪家好
  • 济南 网站建设2022年网络流行语
  • 前端 网站开发 常见功能实现品牌营销策划方案
  • flash网站设计作品武汉网络推广外包公司
  • 珠海公司网站制作百度搜不干净的东西
  • 网站开发功能文档湖南seo优化哪家好
  • 专业做网站企业百度关键词指数查询
  • 淘宝店有给网站做优化am搜索引擎seo
  • wordpress 动漫 主题杭州上城区抖音seo有多好
  • 医院网站建设目的成人英语培训
  • 最新公告哈尔滨南京百度关键字优化价格
  • wordpress注册页面在什么文件深圳网站设计专家乐云seo
  • 企业网络的规划与设计seo外包方案
  • 郑州企业的网站建设站长工具浪潮
  • 创办免费企业网站seo服务外包
  • 搭建网站的网站辽宁网站建设
  • 网站开发流程及进度安排广东队对阵广州队
  • 国外网络推广哪家公司好上海关键词优化方法
  • 网站做的app有哪些网页关键词排名优化
  • 赤峰做网站哪家好好搜搜索引擎
  • 张掖响应式建站平台公司网站如何建设