当前位置: 首页 > news >正文

长沙的网站建设公司哪家好百度搜索广告推广

长沙的网站建设公司哪家好,百度搜索广告推广,网站系统修改不了怎么回事,平台和网站有什么区别神经网络权重不可为相同的值,比如都为0,因为如果这样网络正向传播输出和反向传播结果对于各权重都完全一样,导致设置多个权重和设一个权重毫无区别。我们需要使用随机数作为网络权重 实验程序 在以下实验中,我们使用5层神经网络…

神经网络权重不可为相同的值,比如都为0,因为如果这样网络正向传播输出和反向传播结果对于各权重都完全一样,导致设置多个权重和设一个权重毫无区别。我们需要使用随机数作为网络权重

实验程序

在以下实验中,我们使用5层神经网络,每层神经元个数100,使用sigmoid作为激活函数,向网络传入1000个正态分布随机数,测试使用不同的随机数对网络权重的影响。

# coding: utf-8
import numpy as np
import matplotlib.pyplot as pltdef sigmoid(x):return 1 / (1 + np.exp(-x))def ReLU(x):return np.maximum(0, x)def tanh(x):return np.tanh(x)input_data = np.random.randn(1000, 100)  # 1000个数据
node_num = 100  # 各隐藏层的节点(神经元)数
hidden_layer_size = 5  # 隐藏层有5层
activations = {}  # 激活值的结果保存在这里x = input_datafor i in range(hidden_layer_size):if i != 0:x = activations[i-1]# 改变初始值进行实验!w = np.random.randn(node_num, node_num) * 1# w = np.random.randn(node_num, node_num) * 0.01# w = np.random.randn(node_num, node_num) * np.sqrt(1.0 / node_num)# w = np.random.randn(node_num, node_num) * np.sqrt(2.0 / node_num)a = np.dot(x, w)# 将激活函数的种类也改变,来进行实验!z = sigmoid(a)# z = ReLU(a)# z = tanh(a)activations[i] = z# 绘制直方图
for i, a in activations.items():plt.subplot(1, len(activations), i+1)plt.title(str(i+1) + "-layer")if i != 0: plt.yticks([], [])# plt.xlim(0.1, 1)# plt.ylim(0, 7000)plt.hist(a.flatten(), 30, range=(0,1))
plt.show()

1 标准差为1随机正态
在这里插入图片描述
在这一情况下,权重值主要集中于0和1.由于sigmoid在接近0和1时导数趋于0,这一数据分别会导致反向传播中梯度逐渐减小,这一现象称为梯度消失

2 标准差为0.01随机正态
在这里插入图片描述
这时神经网络权重集中在0.5附近,此时不会出现梯度消失,但是由于值集中在同一区间,多个神经网络会输出几乎相同的值,使得神经网络表现能力受限(如开头所说)

3 使用Xavier初始值

Xavier初始值为保证各层权重值具有足够广度设计。其推导出的最优初始值为每一层初始权重值是1/√N,其中N为上一层权重个数

使用sigmoid激活函数和Xavier初始值结果:
在这里插入图片描述
可以看到此时权重初始值的值域明显大于了之前的取值。Xavier初始值是基于激活函数为线性函数的假设推导出的。sigmoid函数关于(0, 0.5)对称,其在原点附近还不是完美的线性。而tanh函数关于原点对称,在原点附近可以基本近似于直线,其使用Xavier应该会产生更理想的参数值

使用tanh激活函数和Xavier初始值:
在这里插入图片描述
ReLU函数的权重设置

ReLU函数有自己独特的默认权重设置,称为He初始值,其公式为2/√N标准差的随机数,N为上一次神经元个数。
在这里插入图片描述
在该分布中,各层广度分布基本相同,这使得即使层数加深,也不容易出现梯度消失问题

使用mnist数据集对不同初始化权重方法进行测试:

该程序使用0.01随机正态,Xavier + sigmoid,He + ReLU进行2000轮反向传播,并绘制总损失关于迭代次数图象

# coding: utf-8
import os
import syssys.path.append("D:\AI learning source code")  # 为了导入父目录的文件而进行的设定
import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from common.util import smooth_curve
from common.multi_layer_net import MultiLayerNet
from common.optimizer import SGD# 0:读入MNIST数据==========
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True)train_size = x_train.shape[0]
batch_size = 128
max_iterations = 2000# 1:进行实验的设置==========
weight_init_types = {'std=0.01': 0.01, 'Xavier': 'sigmoid', 'He': 'relu'}
optimizer = SGD(lr=0.01)networks = {}
train_loss = {}
for key, weight_type in weight_init_types.items():networks[key] = MultiLayerNet(input_size=784, hidden_size_list=[100, 100, 100, 100],output_size=10, weight_init_std=weight_type)train_loss[key] = []# 2:开始训练==========
for i in range(max_iterations):batch_mask = np.random.choice(train_size, batch_size)x_batch = x_train[batch_mask]t_batch = t_train[batch_mask]for key in weight_init_types.keys():grads = networks[key].gradient(x_batch, t_batch)optimizer.update(networks[key].params, grads)loss = networks[key].loss(x_batch, t_batch)train_loss[key].append(loss)if i % 100 == 0:print("===========" + "iteration:" + str(i) + "===========")for key in weight_init_types.keys():loss = networks[key].loss(x_batch, t_batch)print(key + ":" + str(loss))# 3.绘制图形==========
markers = {'std=0.01': 'o', 'Xavier': 's', 'He': 'D'}
x = np.arange(max_iterations)
for key in weight_init_types.keys():plt.plot(x, smooth_curve(train_loss[key]), marker=markers[key], markevery=100, label=key)
plt.xlabel("iterations")
plt.ylabel("loss")
plt.ylim(0, 2.5)
plt.legend()
plt.show()

在这里插入图片描述
在该图象中可以看到,0.01随机正态由于梯度丢失问题,权重更新速率极慢,在2000次迭代中总损失基本没有变化。Xavier和He都正常进行了反向传播得到了更准确的网络参数,其中He似乎学习速率更快一些

http://www.ds6.com.cn/news/58764.html

相关文章:

  • 企业网站托管如何更有效百度最怕哪个投诉电话
  • wordpress ip更换域名宁波seo哪家好
  • 医院网站建设技术方案ppt怀柔网站整站优化公司
  • 查网站域名备案徐州seo建站
  • 手机怎样建个人网站企业关键词排名优化网址
  • 做网站要的图片斗鱼郑州seo公司
  • 网站建设学生选课课程设计报告上海百度竞价托管
  • html5移动端网站开发google入口
  • 学校网站制作线上广告推广平台
  • 网站semseo先做哪个百度指数里的资讯指数是什么
  • 摄影网址windows清理优化大师
  • 前端网站开发毕设类型购买友情链接网站
  • 哪些行业网站推广做的多邯郸百度推广公司
  • 国外做储物柜的网站百度网站排名优化价格
  • 简单的销售网站怎么做小红书代运营
  • 龙泉市建设局网站来宾seo
  • icp网站备案系统怎么做市场推广
  • 凯里哪里有做网站的百度云盘
  • 互联网网站建设趋势seo免费外链工具
  • 鞍山市城乡建设委员会网站百度搜首页
  • 下载正品官方网站青岛seo外包公司
  • 汕头企业网站建站模板seo营销网站
  • 佛山网站制作自己怎么做网址开网站
  • wordpress nvaseo全网优化推广
  • 组工网站建设方案哪里可以免费推广广告
  • 网站建设为了什么企业微信营销系统
  • 大型租车门户网站商业版源码解封后中国死了多少人
  • ASP网站建设招聘搜一搜排名点击软件
  • 优秀网站设计广东seo价格是多少钱
  • 高端网站开发 金蝶网站优化策划书