当前位置: 首页 > news >正文

上海市安全生产建设协会网站采集站seo课程

上海市安全生产建设协会网站,采集站seo课程,wordpress wpenqueuescripts,网站设计与网页制作教程在神经网络中,通常采用反向传播算法来计算网络中各个参数的梯度,从而进行参数更新。在反向传播过程中,所有的参数都会被更新。因此,如果想要只更新指定的边,需要采用特殊的方法。 一种可能的方法是使用掩码&#xff0…

在神经网络中,通常采用反向传播算法来计算网络中各个参数的梯度,从而进行参数更新。在反向传播过程中,所有的参数都会被更新。因此,如果想要只更新指定的边,需要采用特殊的方法。

一种可能的方法是使用掩码(masking)技术,将不需要更新的参数的梯度设置为0。在这种方法中,可以通过创建一个掩码张量来指定哪些参数需要更新,哪些参数不需要更新。将不需要更新的参数对应的掩码设置为0,将需要更新的参数对应的掩码设置为1,然后将掩码张量与梯度张量相乘,就可以得到只包含需要更新的参数的梯度张量。最后,将这个梯度张量用于参数更新即可。

另一种方法是使用稀疏矩阵(sparse matrix)技术。在这种方法中,将网络中的所有参数看作一个大的稀疏矩阵,其中只有需要更新的参数对应的元素有非零值。可以使用专门的稀疏矩阵运算库来进行矩阵乘法和梯度计算,从而只更新需要更新的参数。

这两种方法都需要在网络的实现上进行一定的改动,但可以实现只对指定的边进行参数更新的目的。

以下是一个使用掩码(masking)技术的例子,演示如何只对指定的边进行参数更新:

import torch# 创建一个大小为 (2, 2) 的参数张量
weights = torch.randn(2, 2, requires_grad=True)# 创建一个大小与参数张量相同的掩码张量
mask = torch.tensor([[1, 0], [1, 1]])# 对参数进行一次前向传播和反向传播
input = torch.randn(2)
output = torch.matmul(weights, input)
loss = output.sum()
loss.backward()# 将不需要更新的参数的梯度张量设置为0
weights.grad *= mask# 使用得到的梯度张量更新参数
learning_rate = 0.1
weights.data -= learning_rate * weights.grad# 打印更新后的参数张量
print(weights)

在这个例子中,我们创建了一个大小为 (2, 2) 的参数张量 weights,同时创建了一个大小与参数张量相同的掩码张量 mask,其中掩码值为0的位置对应的参数不会被更新。在进行一次前向传播和反向传播后,我们将不需要更新的参数的梯度张量设置为0,然后使用得到的梯度张量更新参数。最后,我们打印更新后的参数张量。

注意,这个例子只演示了如何使用掩码技术对指定的边进行参数更新,实际上掩码技术的应用还需要考虑一些细节,例如如何处理掩码对梯度张量的影响,如何更新多个参数张量等等。实际应用中需要根据具体情况进行调整。

以下是一个使用稀疏矩阵(sparse matrix)技术的例子,演示如何只对指定的边进行参数更新:

import torch# 创建一个大小为 (2, 2) 的稀疏矩阵
indices = torch.tensor([[0, 0], [1, 0], [1, 1]])
values = torch.randn(3)
weights = torch.sparse_coo_tensor(indices.t(), values, (2, 2), requires_grad=True)# 对参数进行一次前向传播和反向传播
input = torch.randn(2)
output = torch.sparse.mm(weights, input)
loss = output.sum()
loss.backward()# 使用得到的梯度张量更新参数
learning_rate = 0.1
weights.data -= learning_rate * weights.grad.to_dense()# 打印更新后的参数张量
print(weights.to_dense())
import torch# 定义网络参数和稀疏矩阵
W1 = torch.randn(2, 2, requires_grad=True)
W2 = torch.randn(1, 2, requires_grad=True)
indices = torch.tensor([[0, 0], [1, 1], [1, 0]])
values = torch.randn(3)
mask = torch.sparse_coo_tensor(indices.t(), values, (2, 2), requires_grad=True)# 定义输入和目标输出
X = torch.tensor([[0.5, 0.2]])
target_output = torch.tensor([[0.7]])# 前向传播
z1 = torch.matmul(X, W1.t())
h1 = torch.sigmoid(z1)
z2 = torch.matmul(h1, W2.t())
output = torch.sigmoid(z2)# 计算损失函数并进行反向传播
loss = torch.nn.functional.binary_cross_entropy(output, target_output)
loss.backward()# 对需要更新的参数进行梯度更新
learning_rate = 0.1
with torch.no_grad():W1.grad *= mask.to_dense()W1 -= learning_rate * W1.gradW2 -= learning_rate * W2.grad# 打印更新后的 W1
print(W1)

在这个例子中,我们定义了一个两层神经网络,其中第一层权重参数为 W1,第二层权重参数为 W2。我们还创建了一个稀疏矩阵 mask,用于指定第一层权重参数中哪些边需要更新。然后我们进行了一次前向传播和反向传播,并使用 mask 对需要更新的参数进行梯度更新,最后打印更新后的 W1。

需要注意的是,在稀疏矩阵的梯度更新中,需要将稀疏矩阵转换为稠密矩阵进行更新,因为 PyTorch 目前不支持对稀疏矩阵进行原位更新。因此,在更新 W1 时,我们使用了 mask.to_dense() 将稀疏矩阵转换为稠密矩阵,然后再与 W1.grad 相乘。

神经网络对指定的边进行l1正则化

import torch# 定义网络参数和稀疏矩阵
W1 = torch.randn(2, 2, requires_grad=True)
W2 = torch.randn(1, 2, requires_grad=True)
indices = torch.tensor([[0, 0], [1, 1], [1, 0]])
values = torch.randn(3)
mask = torch.sparse_coo_tensor(indices.t(), values, (2, 2), requires_grad=False)# 定义输入和目标输出
X = torch.tensor([[0.5, 0.2]])
target_output = torch.tensor([[0.7]])# 定义 L1 正则化系数和学习率
lambda_l1 = 0.1
learning_rate = 0.1# 计算正则化项并添加到损失函数中
reg_loss = lambda_l1 * torch.sum(torch.abs(W1 * mask.to_dense()))
loss = torch.nn.functional.binary_cross_entropy(torch.sigmoid(torch.matmul(torch.sigmoid(torch.matmul(X, W1.t())), W2.t())), target_output)
loss += reg_loss# 进行反向传播并对需要更新的参数进行梯度更新
loss.backward()
with torch.no_grad():W1.grad *= mask.to_dense()W1 -= learning_rate * (W1.grad + lambda_l1 * torch.sign(W1) * mask.to_dense())W2 -= learning_rate * W2.grad# 打印更新后的 W1
print(W1)

对神经网络的边(即权重)进行 L1 正则化的方法通常是在损失函数中添加一个 L1 正则项,其目的是鼓励网络学习稀疏权重,从而减少过拟合。

对于只对指定的边进行 L1 正则化的问题,可以使用稀疏矩阵技术。具体来说,可以使用与前面提到的相同的稀疏矩阵 mask,其中非零元素表示需要正则化的权重。在计算 L1 正则化项时,我们只需将非零元素的绝对值相加即可。最终,将这个正则化项添加到损失函数中,以鼓励模型学习稀疏的权重。

以下是一个使用稀疏矩阵技术对神经网络的指定边进行 L1 正则化的示例:

import torch# 定义网络参数和稀疏矩阵
W1 = torch.randn(2, 2, requires_grad=True)
W2 = torch.randn(1, 2, requires_grad=True)
indices = torch.tensor([[0, 0], [1, 1], [1, 0]])
values = torch.randn(3)
mask = torch.sparse_coo_tensor(indices.t(), values, (2, 2), requires_grad=False)# 定义输入和目标输出
X = torch.tensor([[0.5, 0.2]])
target_output = torch.tensor([[0.7]])# 定义 L1 正则化的权重系数
l1_weight = 0.01# 前向传播
z1 = torch.matmul(X, W1.t())
h1 = torch.sigmoid(z1)
z2 = torch.matmul(h1, W2.t())
output = torch.sigmoid(z2)# 计算损失函数
loss = torch.nn.functional.binary_cross_entropy(output, target_output)
l1_loss = l1_weight * torch.sum(torch.abs(mask * W1))
total_loss = loss + l1_loss# 进行反向传播
total_loss.backward()# 对所有参数进行梯度更新
learning_rate = 0.1
with torch.no_grad():W1 -= learning_rate * W1.gradW2 -= learning_rate * W2.grad# 打印更新后的 W1
print(W1)

在这个例子中,我们将稀疏矩阵 mask 中的非零元素与 W1 相乘,得到需要正则化的权重矩阵。然后,我们计算 L1 正则化项,并将其乘以一个权重系数 l1_weight。最后,将 L1 正则化项和交叉熵损失项相加,得到总的损失函数 total_loss。最终,我们对所有参数进行梯度更新,而不仅仅是对需要正则化的权重进行更新。

http://www.ds6.com.cn/news/5725.html

相关文章:

  • 怎么做万网网站爱站seo工具包官网
  • 公司网站域名是什么百度关键词购买
  • wordpress 模拟word百度seo排名点击
  • wordpress存档国内seo工具
  • 做网站网课今天最新消息
  • 哈尔滨专业网站制作设计手机网站关键词快速排名
  • 网站的权重是什么意思qq营销
  • 做网站是不是要域名费新浪微指数
  • 小说网站做编辑子域名大全查询
  • 小程序快速建站10种营销方法
  • 狼友我们只做精品网站小程序开发平台
  • 整形美容医院手机网站wap模板推广普通话手抄报简单又好看
  • 建一个自己的网站有什么用环球资源网站网址
  • 儿童个人网站源码高平网站优化公司
  • 武汉做网站的知名公司seo网络推广师招聘
  • 兰州做网站开发抖音seo优化
  • 网站建设案例讯息新闻发布最新新闻
  • datadata.asp 网站 破解抖音seo供应商
  • 网站开发功能表推广引流图片
  • 做外汇都要看什么网站上海网络推广外包
  • 杭州有哪些做网站的公司电商网站建设报价
  • 网站建设 北京北京百度推广电话号码
  • 佛山p2p网站建设站长推广网
  • 科技画重庆seo公司
  • 拍卖网站咋做河南关键词排名顾问
  • 合肥网站建设平台常州网站seo
  • 深圳网站建设哪家口碑好企业全网推广公司
  • 网站设计器百度关键词优化的意思
  • 衢州+做+网站谷歌seo站内优化
  • 做二手房怎找房源网站企业软文范例