当前位置: 首页 > news >正文

点击网络怎么做网站宿迁网站建设制作

点击网络怎么做网站,宿迁网站建设制作,网页编辑文字,免费crm网站下载的软件目录 理论基础 一、简单贪心 LeetCode455:分发饼干 二、中等贪心 2.1 序列问题 LeetCode376:摆动序列 2.2 贪心股票问题 LeetCode121:买卖股票的最佳时机 LeetCode121:买卖股票的最佳时机ii 2.3 两个维度权衡问题 LeetCode135&…

目录

理论基础

一、简单贪心

LeetCode455:分发饼干

二、中等贪心

2.1 序列问题

LeetCode376:摆动序列

2.2 贪心股票问题

LeetCode121:买卖股票的最佳时机

LeetCode121:买卖股票的最佳时机ii

2.3 两个维度权衡问题

LeetCode135:分发糖果

三、较难问题

区间问题 

LeetCode55:跳跃游戏i

LeetCode55:跳跃游戏ii

LeetCode452:用最少数量的箭引爆气球

LeetCode435:无重叠区间

LeetCode763:划分字母区间

LeetCode56:合并区间

其他

LeetCode53:最大子序和


贪心算法其实就是没有什么规律可言,所以大家了解贪心算法 就了解它没有规律的本质就够了。 不用花心思去研究其规律, 没有思路就立刻看题解。基本贪心的题目 有两个极端,要不就是特简单,要不就是死活想不出来。  

学完贪心之后再去看动态规划,就会了解贪心和动规的区别。

理论基础

贪心的本质是选择每一阶段的局部最优,从而达到全局最优

举例:有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?指定每次拿最大的,最终结果就是拿走最大数额的钱。

每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优

再举一个例子如果是 有一堆盒子,你有一个背包体积为n,如何把背包尽可能装满,如果还每次选最大的盒子,就不行了。这时候就需要动态规划。动态规划的问题在下一个系列会详细讲解。

什么时候用贪心呢?没有固定的套路。刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心

贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解


一、简单贪心

LeetCode455:分发饼干

思路:这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,

全局最优就是喂饱尽可能多的小孩

所以可以尝试使用贪心策略,先将饼干数组和小孩数组排序。然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。

class Solution {// 思路:优先考虑胃口,先喂饱大胃口public int findContentChildren(int[] g, int[] s) {Arrays.sort(g);Arrays.sort(s);int count = 0;int start = s.length - 1;// 遍历胃口for (int index = g.length - 1; index >= 0; index--) {if(start >= 0 && g[index] <= s[start]) {start--;count++;}}return count;}
}

二、中等贪心

2.1 序列问题

LeetCode376:摆动序列

思路:局部最优是删除连续坡度上的节点,保证这个坡度有两个局部峰值

整体最优是整个序列拥有最多的局部峰值

在实际操作上,实际连删除都不用做,只需添加数组的局部峰值即可

本题的难度在于要考虑多种情况:(curdiff代表后一个坡度,prediff代表前一个坡度

即单调有平坡、上下中间有平坡和只有两个数的情况,具体分析见代码随想录

class Solution {public int wiggleMaxLength(int[] nums) {if (nums.length <= 1) {return nums.length;}//当前差值int curDiff = 0;//上一个差值int preDiff = 0;int count = 1;for (int i = 1; i < nums.length; i++) {//得到当前差值curDiff = nums[i] - nums[i - 1];//如果当前差值和上一个差值为一正一负//等于0的情况表示初始时的preDiffif ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {count++;preDiff = curDiff;}}return count;}
}

这道题还可以用动态规划来做,这里就不讲了。之后可以试着做一做。


2.2 贪心股票问题

LeetCode121:买卖股票的最佳时机

思路:局部最优即左界最小,在局部最优的基础上要求的全局最优即右界最大,也就是差值最大。

class Solution {public int maxProfit(int[] prices) {int max = 0;int low = Integer.MAX_VALUE;  //保留左侧最小值for (int i = 0; i < prices.length; i++) {low = Math.min(low, prices[i]);  // 取最左最小价格,确定左界max = Math.max(max, prices[i] - low); // 寻找右侧最大值}return max;}
}

LeetCode121:买卖股票的最佳时机ii

思路:局部最优即在区间中寻找所有的最大递增子区间,且子区间之间不能重叠

整体最优:取所有最大的递增子区间,最后利润和也最大。

由于最后只要求利润,该题可以变成只要收集每天的正利润,而无需考虑区间的左右界。

// 贪心思路
class Solution {public int maxProfit(int[] prices) {int result = 0;for (int i = 1; i < prices.length; i++) {result += Math.max(prices[i] - prices[i - 1], 0);}return result;}
}

2.3 两个维度权衡问题

LeetCode135:分发糖果

思路:本题需要先确定一遍后,在确定另一边,从左到右的局部最优即:只要右边评分比左边大,右边的孩子就多一个糖果。全局最优:评分高的右边孩子比左边孩子糖果更多。

本题需要先从左到右更新,再从右到左,这样才能满足相邻条件。从右到左局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。

class Solution {/**分两个阶段1、起点下标1 从左往右,只要 右边 比 左边 大,右边的糖果=左边 + 1,不大于就取最小糖果数1;2、起点下标 ratings.length - 2 从右往左, 只要左边 比 右边 大,此时 左边的糖果应该 取本身的糖果数(符合比它左边大) 和 右边糖果数 + 1 二者的最大值,这样才符合 它比它左边的大,也比它右边大*/public int candy(int[] ratings) {int len = ratings.length;int[] candyVec = new int[len];candyVec[0] = 1;for (int i = 1; i < len; i++) {candyVec[i] = (ratings[i] > ratings[i - 1]) ? candyVec[i - 1] + 1 : 1;}for (int i = len - 2; i >= 0; i--) {if (ratings[i] > ratings[i + 1]) {candyVec[i] = Math.max(candyVec[i], candyVec[i + 1] + 1);}}int ans = 0;for (int num : candyVec) {ans += num;}return ans;}
}

三、较难问题

区间问题 

LeetCode55:跳跃游戏i

思路:总共要跳nums.length-1步才能到达终点,局部解即取最大跳跃步数max每次循环以第一轮的max为起点再次计算max的覆盖范围

整体解即所有的最大跳跃步数范围是否能覆盖到终点

class Solution {public boolean canJump(int[] nums) {int max = 0;for(int i=0;i<=max;i++){    //这里注意是小于等于max,max更新等于以新一轮覆盖点为起点再次覆盖max = Math.max(i+nums[i],max);if(max>=nums.length-1)  return true;}return false;}
}

LeetCode55:跳跃游戏ii

思路:局部解即每次的跳转步数尽可能最大,这样跳跃次数就最小

整体解即范围覆盖到终点且跳跃次数最小

本题的关键在于什么时候对步数进行+1?用到两个变量curIndex和preIndex来确定位置

class Solution {public int jump(int[] nums) {int nextIndex = 0;int curIndex = 0;int count = 0;for(int i=0; i<=nums.length;i++){nextIndex = Math.max(nextIndex,i+nums[i]);if(i == curIndex){   //当走到当前的最大覆盖范围时,判断是否到终点count++;    //如果没到,就要跳一步curIndex = nextIndex;   //跳到更新过的下一坐标if(nextIndex >= nums.length - 1) break; //如果到了则走完了}}return count;}
}

LeetCode452:用最少数量的箭引爆气球

思路:写了435,这道题就很容易了

class Solution {public int findMinArrowShots(int[][] points) {int count = 1;Arrays.sort(points, (x,y)->Integer.compare(x[1],y[1]));int end = points[0][1];for(int i=1;i<points.length;i++){//只要右界排序,记录不重叠的情况就可以了,每次不重叠就需要多一支箭if(end < points[i][0]){ count++;end = points[i][1];}}return count;}
}

LeetCode435:无重叠区间

思路:重叠区间问题通常有两种思路:要么是按左边界排序,要么是按右边界

1. 按右边界升序排列,从左向右可以记录非重叠区间的个数,总数-非重叠个数=重叠个数

非重叠只要判断end和上一区间的左区间的关系

class Solution {public int eraseOverlapIntervals(int[][] intervals) {Arrays.sort(intervals, (a,b)-> {return Integer.compare(a[1],b[1]);});int count = 1;  //记录非重叠区间的个数int end = intervals[0][1];for(int i = 1;i < intervals.length;i++){if(end <= intervals[i][0]){ //无重叠区间,count++,更新endcount++;end = intervals[i][1];}}return intervals.length-count;}
}

2. 按左边界升序排序,向左到右可以记录重叠的区间个数,直接得到重叠个数就是移除个数

非重叠和重叠都要更新end,之所以count取end和右界的较小值是因为,可能会出现>=3个区间重叠的情况

class Solution {public int eraseOverlapIntervals(int[][] intervals) {Arrays.sort(intervals, (a,b)-> {return Integer.compare(a[0],b[0]);});int count = 0;  //记录重叠区间的个数int end = intervals[0][1];for(int i = 1;i < intervals.length;i++){if(end <= intervals[i][0]){ //无重叠区间,更新endend = intervals[i][1];}else{count++;end = Math.min(end, intervals[i][1]);  //重叠区间的end}}return count;}
}

LeetCode763:划分字母区间

思路:首先遍历计算每个字母的最后出现下标,然后从头开始遍历,并更新最远出现下标,当到达最后序号时进行一次分割

class Solution {public List<Integer> partitionLabels(String s) {List<Integer> list = new ArrayList<>();int[] record = new int[26];//首先记录字母最后一次出现的下标for(int i=0;i<s.length();i++){record[s.charAt(i)-'a'] = i;}int idx = 0;int last = -1;//然后当遍历下标等于最后一次的下标时,添加字符串长度for(int i=0;i<s.length();i++){idx = Math.max(idx, record[s.charAt(i)-'a']);if(i == idx){list.add(idx-last); //先添加结果到list,再更新last = idx;}}return list;}
}

LeetCode56:合并区间

思路:同样首先按照左边界先排序,然后判断左边界和最右边界

记得判断=到底属于那种情况

class Solution {public int[][] merge(int[][] intervals) {List<int[]> res = new LinkedList<>();Arrays.sort(intervals, (x,y)->Integer.compare(x[0],y[0]));int left = intervals[0][0];int right = intervals[0][1];for(int i = 1; i<intervals.length; i++){if(right >= intervals[i][0]){   //重叠,合并right = Math.max(right, intervals[i][1]);}else{  //不重叠,添加旧区间,更新left、rightres.add(new int[]{left, right});left = intervals[i][0];right = intervals[i][1];}}res.add(new int[]{left, right});return res.toArray(new int[res.size()][2]);}
}

其他

LeetCode53:最大子序和

思路:连续子数组局部最优,即遇到连续和count为负数,则立刻放弃当前count,置0,相当于从当前位置重新开始计算连续子数组和。整体最优即用sum来计算循环中count的最大值。

class Solution {public int maxSubArray(int[] nums) {if (nums.length == 1){return nums[0];}int sum = Integer.MIN_VALUE;int count = 0;for (int i = 0; i < nums.length; i++){count += nums[i];sum = Math.max(sum, count); // 取区间累计的最大值(相当于不断确定最大子序终止位置)if (count <= 0){count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和}}return sum;}
}

http://www.ds6.com.cn/news/53894.html

相关文章:

  • wordpress lms插件seo专员岗位要求
  • 保山企业网站建设关键词分析软件
  • 中山企业网站制作公司手机制作网站app
  • asp.net mvc 网站开发之美艾滋病多久能查出来
  • 网站建设免费模板哪家好百度官方网
  • 设计logo网站有哪些免费百度广告联盟平台的使用知识
  • 自已建网站微信登录长春seo代理
  • 电子科技网站建设重庆网站seo建设哪家好
  • wordpress 下拉菜单插件seo是搜索引擎优化吗
  • 淘宝网店运营培训冯耀宗seo课程
  • 淮北网站制作全国各城市疫情高峰感染高峰进度
  • dede网站地图 调用文章营销手机系统安装
  • 介绍自己做衣服的网站网站推广计划书范文
  • 石景山区城乡建设委员会网站海淀区seo多少钱
  • wordpress导航站的源码免费网站注册免费创建网站
  • 个人网站开发报告太原seo网络优化招聘网
  • 自学做网站多久建站流程主要有哪些
  • 企业网站数防泄露怎么做电子商务网站建设
  • 如何建设网站 企业seo关键词查询工具
  • 网站里的地图定位怎么做衡水seo营销
  • 天翼云主机 网站服务器网页代码大全
  • 惠州网站制作案例seo推广优化多少钱
  • 网网站建设站建设东莞网络推广系统
  • 网站木马文件删除泉州百度竞价推广
  • 2022最火的新零售模式seo快速排名优化公司
  • 做专题页的背景网站百度广告投放公司
  • 大连做网站价钱搜索引擎优化好做吗
  • 中企动力官方网站电视剧百度风云榜
  • 网站做快照怎么做seo排名优化的方法
  • 网站怎么用ftp修改网页内容日照seo公司