当前位置: 首页 > news >正文

免费网站新域名推广app的平台

免费网站新域名,推广app的平台,幻灯网站源码,wordpress 自动换行英雄联盟S14世界赛选手数据可视化 由于本学期有一门数据可视化课程,课程结课作业要求完成一个数据可视化的小Demo,于是便有了这个小项目,课程老师要求比较简单,只要求熟练运用可视化工具展示数据,并不要求数据来源&am…

英雄联盟S14世界赛选手数据可视化

由于本学期有一门数据可视化课程,课程结课作业要求完成一个数据可视化的小Demo,于是便有了这个小项目,课程老师要求比较简单,只要求熟练运用可视化工具展示数据,并不要求数据来源,因此这个小项目非常简单


项目简介

这是一个基于 PyEcharts 的数据可视化小项目,展示了英雄联盟 S14 世界赛选手的关键数据表现,适合作为数据可视化课程作业或兴趣项目。

项目特点:

  • 数据源权威,来源于 Kaggle。
  • 涉及多种可视化类型,包括柱状图、箱形图、雷达图等。
  • 共包含 14 个可视化图表,分布在 3 个 HTML 页面中,方便浏览与展示。

完整代码:英雄联盟S14世界赛选手数据可视化

数据来源

数据来自 Kaggle 平台的 2024 LoL Championship Player Stats & Swiss Stage。

  • 数据涵盖选手的各项核心指标,如 KDA、场均击杀、场均死亡等。
  • 细化到每分钟视野分数、野区控制等高级数据。

数据示例

TeamNamePlayerNamePositionGamesPenta KillsSolo KillsCountryFlashKeybind
Top Esports369Top802ChinaD
Dplus KIAaimingAdc902South KoreaF
MAD Lions KOIalvaroSupport500SpainD
LNG EsportszikaTop802ChinaD

效果展示

主要采用PyEcharts来完成数据可视化

数据总览

该模块主要有一个各队伍平均胜率的柱状图和全部选手的国籍分布饼图组成

在这里插入图片描述

# 计算各队伍平均胜率,并将其转换为百分数形式(乘以100并保留两位小数)
team_win_rates = df.groupby('TeamName')['Win rate'].mean().reset_index()
team_win_rates['Win rate'] = team_win_rates['Win rate'].apply(lambda x: round(x * 100, 2))
print(team_win_rates)
# 绘制柱状图
bar = Bar(init_opts=opts.InitOpts(width="1100px", height="500px")
)
bar.add_xaxis(team_win_rates['TeamName'].tolist())
bar.add_yaxis("平均胜率", team_win_rates['Win rate'].tolist(), category_gap="60%")
bar.set_global_opts(title_opts=opts.TitleOpts(title="各队伍平均胜率", subtitle=""),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)),yaxis_opts=opts.AxisOpts(name="胜率", min_=0, max_=100),visualmap_opts=opts.VisualMapOpts(is_show=False, max_=100, min_=0)
)
bar.render("static/charts/team_win_rates.html")

在这里插入图片描述

# 国家分布
# 按照国家进行分组,计算每个国家的选手数量
grouped_data = df.groupby('Country').size()# 将结果转换为 DataFrame,并命名为 'Count'
country_data = grouped_data.reset_index(name='Count')
print(country_data)
country_pie = (Pie(init_opts=opts.InitOpts(theme="macarons")).add("", [list(z) for z in zip(country_data['Country'], country_data['Count'])]).set_global_opts(title_opts=opts.TitleOpts(title=""))
)
country_pie.render("static/charts/country_distribution_chart.html")

主要数据

该模块主要涉及了选手的各方位数据总览情况,能够直观的观察各方面数据突出的选手,其中包括:场均击杀、

场均KDA、场均死亡、场均助攻、辅助视野综合得分、选手平均击杀、选手闪现按键情况

在这里插入图片描述

# 场均击杀
sorted_df = df.sort_values(by='Avg kills', ascending=False)
avg_kills = sorted_df[['PlayerName', 'Avg kills']]
avg_kills_top10 = avg_kills[0:10]
print(avg_kills_top10)
# 创建Bar实例,用于构建柱状图
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px")
)
# 添加x轴数据,即选手姓名
bar.add_xaxis(avg_kills_top10['PlayerName'].tolist())
# 添加y轴数据,即场均击杀数,并设置系列名称为"场均击杀数"
bar.add_yaxis("场均击杀数", avg_kills_top10['Avg kills'].tolist())
# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均击杀榜前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45),  # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均击杀数"),  # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=6, min_=4)
)
bar.render("static/charts/avg_kills_top10.html")

在这里插入图片描述

# KDA
kda_top10 = df.sort_values(by='KDA', ascending=False)[['PlayerName', 'KDA']][0:10]
print(kda_top10)
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px")
)
bar.add_xaxis(kda_top10['PlayerName'].tolist())bar.add_yaxis('场均KDA', kda_top10['KDA'].tolist())
# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均KDA前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45),  # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均KDA"),  # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=10, min_=6)
)
bar.render("static/charts/kda_top10.html")

在这里插入图片描述

# 场均死亡
deaths_top10 = df.sort_values(by='Avg deaths', ascending=False)[['PlayerName', 'Avg deaths']][0:10]
print(deaths_top10)
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px", theme="macarons"))
bar.add_xaxis(deaths_top10['PlayerName'].tolist())
bar.add_yaxis('场均死亡', deaths_top10['Avg deaths'].tolist())
# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均死亡前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45),  # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均死亡"),  # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=6, min_=4)
)
bar.render("static/charts/deaths_top10.html")

在这里插入图片描述

# 场均助攻
assists_top10 = df.sort_values(by='Avg assists', ascending=False)[['PlayerName', 'Avg assists']][0:10]
print(assists_top10)
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px", theme="macarons")
)
bar.add_xaxis(assists_top10['PlayerName'].tolist())bar.add_yaxis('场均助攻', assists_top10['Avg assists'].tolist())# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均助攻前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45),  # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均助攻"),  # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=13, min_=10)
)
bar.render("static/charts/assists_top10.html")

其中每分钟视野分数(VSPM)、每分钟赢得的野区分数(每分钟赢得的野区分数)、每分钟控制野区分数(Avg WCPM)、每分钟视野控制分数(Avg VWPM)各自的权重为1,可自行更改

在这里插入图片描述

# 辅助野区视野排行
df['custom_sort'] = df['VSPM'] * 25 + df['Avg WPM'] * 25 + df['Avg WCPM'] * 25 + df['Avg VWPM'] * 25
support_top_10 = df.sort_values(by='custom_sort', ascending=False)[['PlayerName', 'VSPM', 'Avg WPM', 'Avg WCPM', 'Avg VWPM', 'custom_sort']][0:10]
print(support_top_10)
# 创建堆叠柱状图
bar_stacked = Bar(init_opts=opts.InitOpts(width="1000px", height="400px", theme='macarons')
)
# 添加 X 轴数据(选手名字)
bar_stacked.add_xaxis(support_top_10['PlayerName'].tolist())
# 添加堆叠柱状图的每一项数据
bar_stacked.add_yaxis("每分钟视野分数", support_top_10['VSPM'].tolist(), stack="stack1")
bar_stacked.add_yaxis("每分钟赢得的野区分数", support_top_10['Avg WPM'].tolist(), stack="stack1")
bar_stacked.add_yaxis("每分钟控制野区分数", support_top_10['Avg WCPM'].tolist(), stack="stack1")
bar_stacked.add_yaxis("每分钟视野控制分数", support_top_10['Avg VWPM'].tolist(), stack="stack1")
# 设置全局配置
bar_stacked.set_global_opts(title_opts=opts.TitleOpts(title="辅助野区视野排行"),yaxis_opts=opts.AxisOpts(name=""),xaxis_opts=opts.AxisOpts(name="选手"),legend_opts=opts.LegendOpts(pos_left="right", orient="vertical"),  # 设置图例在左侧
)
# 渲染图表到 HTML 文件
bar_stacked.render("static/charts/support_top_10.html")

各位置场均击杀箱形图:

在这里插入图片描述

# 准备箱线图数据
data = [df[df['Position'] == pos]['Avg kills'].tolist() for pos in df['Position'].unique()]
print(data)
boxplot = Boxplot(init_opts=opts.InitOpts(width="600px", height="400px")
)
boxplot.add_xaxis(df['Position'].unique().tolist())
boxplot.add_yaxis("平均击杀数", boxplot.prepare_data(data), itemstyle_opts=opts.ItemStyleOpts(color="black"))
boxplot.set_global_opts(title_opts=opts.TitleOpts(title="不同位置选手平均击杀数分布"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)  # 此处也是修改为axislabel_opts),yaxis_opts=opts.AxisOpts(name="平均击杀数")
)
boxplot.render("static/charts/avg_kills_distribution.html")

在这里插入图片描述

# 闪现数据
flash = df.groupby('FlashKeybind').size()
flash_data = flash.reset_index(name='flash_group')
创建饼图
pie = Pie(init_opts=opts.InitOpts(width="400px", height="400px")
)
# 添加数据,设置标签格式
pie.add("闪现按键使用情况",[list(z) for z in zip(flash_data['FlashKeybind'].tolist(), flash_data['flash_group'].tolist())],radius=["30%", "60%"],label_opts=opts.LabelOpts(formatter="{b}")
)
# 设置标题
pie.set_global_opts(title_opts=opts.TitleOpts(title="闪现按键"))# 渲染到本地文件
pie.render("static/charts/flash.html")

我的主队

由于作者喜欢TheShy选手,所以主队是WBG,但是此次世界赛TheShy选手选择了休息,但是也没有新的主队会,所以主队依然是WBG

共有五个选手的雷达图

六大维度:

  • KDA
  • KP% (击杀参与率)
  • CSPerMin (每分钟补刀数)
  • GoldPerMin (每分钟经济)
  • DPM (每分钟伤害)
  • VSPM (每分钟视野分数)

在这里插入图片描述

在这里插入图片描述

# 获取选手雷达图的数据
def get_player_render_data(player_name, file_name):player_data = df[df['PlayerName'] == player_name][['KDA', 'KP%', 'CSPerMin', 'GoldPerMin', 'DPM', 'VSPM']].iloc[0]print(player_data)# 雷达图的维度attributes = ['KDA', 'KP%', 'CSPerMin', 'GoldPerMin', 'DPM', 'VSPM']values = player_data.tolist()# 配置雷达图weradar = Radar(init_opts=opts.InitOpts(width="350px", height="350px"))# 定义雷达图的每个维度radar.add_schema(schema=[opts.RadarIndicatorItem(name='KDA', max_=10),opts.RadarIndicatorItem(name='击杀参与率', max_=1),opts.RadarIndicatorItem(name='每分钟补兵', max_=10),opts.RadarIndicatorItem(name='分钟收入金币', max_=500),opts.RadarIndicatorItem(name='分钟伤害', max_=800),opts.RadarIndicatorItem(name='分钟视野分', max_=5)])# 添加数据系列,并设置图例radar.add(player_name,[values],color="blue")# 设置全局选项radar.set_global_opts(title_opts=opts.TitleOpts(title=player_name),legend_opts=opts.LegendOpts(is_show=True, orient="vertical", pos_left="right"))radar.render(file_name)
# 我的主队
get_player_render_data('crisp', 'static/charts/crisp_render_data.html')
get_player_render_data('light', 'static/charts/light_render_data.html')
get_player_render_data('xiaohu', 'static/charts/xiaohu_render_data.html')
get_player_render_data('tarzan', 'static/charts/tarzan_render_data.html')
get_player_render_data('breathe', 'static/charts/breathe_render_data.html')

整体效果

整体效果就是将各个图表集中到了一起,加了一些样式,以一个静态网站来展示

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

完整效果请访问index.html 页面

http://www.ds6.com.cn/news/50978.html

相关文章:

  • 西安北郊网站开发网络市场调研的方法
  • 做汇算清缴在哪个网站下百度推广在线客服
  • 好的专业网站建设公司百度搜索引擎网址
  • 网站前端和后端免费发布推广信息网站
  • 吸引人的广告图片seo诊断工具
  • 电子商务网站建设模式76人vs猛龙
  • 建网站电脑版和手机版怎么做网络营销推广方式都有哪些
  • 网络营销上市公司四川seo推广
  • 怎样把网站做的高大上成都网络推广哪家好
  • 有什么网站开发软件郑州做网站推广哪家好
  • 江门提供网站制作平台百度小程序
  • 企业网站开发哪个好薇网络营销软文范例
  • WordPress转织梦样式调用北京优化seo排名优化
  • 怎么用ps做网站前台美工google翻译
  • 网站制作性价比哪家好域名网站查询
  • 合肥网站建设网站推广郑州seo排名扣费
  • 网站被重定向跳转seo外链优化培训
  • 自己做网站实时监控如何做好网络宣传工作
  • 设计师看什么网站搜索引擎营销案例分析
  • 汇云网站建设英语培训
  • 外贸网站建设哪家比较好蜘蛛seo超级外链工具
  • 网上做网站的手机金融界网站
  • 一般企业网站3年多少钱手机网站建设案例
  • 呼伦贝尔网站建设 设计东莞seo技术培训
  • 想让网站的文章都被收录怎么做市场调研报告范文模板
  • wordpress调用用户名seo运营专员
  • 投资网站怎么做厦门seo网站推广优化
  • 自己做网络主播的网站企业推广软件
  • 甘肃建设项目审批权限网站西安百度推广开户运营
  • 贵阳网站优化排名徐州百度运营中心