当前位置: 首页 > news >正文

有什么做节能报告的网站html模板网站

有什么做节能报告的网站,html模板网站,百度关键词优化工具是什么,西藏做网站找谁PyTorch中的张量具有和NumPy相同的广播特性,允许不同形状的张量之间进行计算。 广播的实质特性,其实是低维向量映射到高维之后,相同位置再进行相加。我们重点要学会的就是低维向量如何向高维向量进行映射。 相同形状的张量计算 虽然我们觉…

在这里插入图片描述

PyTorch中的张量具有和NumPy相同的广播特性,允许不同形状的张量之间进行计算。

广播的实质特性,其实是低维向量映射到高维之后,相同位置再进行相加。我们重点要学会的就是低维向量如何向高维向量进行映射

相同形状的张量计算

虽然我们觉得不同形状之间的张量计算才是广播,但其实相同形状的张量计算本质上也是广播。

t1 = torch.arange(3)
t1
# tensor([0, 1, 2])# 对应位置元素相加
t1 + t1
# tensor([0, 2, 4])

与Python对比

如果两个list相加,结果是什么?

a = [0, 1, 2]
a + a
# [0, 1, 2, 0, 1, 2]

不同形状的张量计算

广播的特性是不同形状的张量进行计算时,一个或多个张量通过隐式转化成相同形状的两个张量,从而完成计算。

但并非任意两个不同形状的张量都能进行广播,因此我们要掌握广播隐式转化的核心依据。

2.1 标量和任意形状的张量

标量(零维张量)可以和任意形状的张量进行计算,计算过程就是标量和张量的每一个元素进行计算。

# 标量与一维向量
t1 = torch.arange(3)
# tensor([0, 1, 2])t1 + 1 # 等效于t1 + torch.tensor(1)
# tensor([1, 2, 3])
# 标量与二维向量
t2 = torch.zeros((3, 4))
t2 + 1 # 等效于t2 + torch.tensor(1)
# tensor([[1., 1., 1., 1.],
#         [1., 1., 1., 1.],
#         [1., 1., 1., 1.]])

2.2 相同维度,不同形状张量之间的计算

我们以t2为例来探讨相同维度、不同形状的张量之间的广播规则。

t2 = torch.zeros(3, 4)
t2
# tensor([[0., 0., 0., 0.],
#         [0., 0., 0., 0.],
#         [0., 0., 0., 0.]])t21 = torch.ones(1, 4)
t21
# tensor([[1., 1., 1., 1.]])

它们都是二维矩阵,t21的形状是1×4t2的形状是3×4,它们在第一个分量上取值不同,但该分量上t21取值为1,因此可以进行广播计算:

t2 + t21
# tensor([[1., 1., 1., 1.],
#        [1., 1., 1., 1.],
#        [1., 1., 1., 1.]])

而t2和t21的实际计算过程如下:

在这里插入图片描述

可理解为t21的一行与t2的三行分别进行了相加。而底层原理为t21的形状由1×4拓展成了t23×4,然后二者对应位置进行了相加。

t22 = torch.ones(3, 1)
t22
# tensor([[1.],
#         [1.],
#         [1.]])t2 + t22
# tensor([[1., 1., 1., 1.],
#         [1., 1., 1., 1.],
#         [1., 1., 1., 1.]])

同理,t22+t2t21+t2结果相同。如果矩阵的两个维度都不相同呢?

t23 = torch.arange(3).reshape(3, 1)
t23
# tensor([[0],
#         [1],
#         [2]])t24 = torch.arange(3).reshape(1, 3)
# tensor([[0, 1, 2]])t23 + t24
# tensor([[0, 1, 2],
#         [1, 2, 3],
#         [2, 3, 4]])

此时,t23的形状是3×1,而t24的形状是1×3,二者的形状在两个份量上均不同,但都有1存在,因此可以广播:

在这里插入图片描述

如果两个张量的维度对应数不同且都不为1,那么就无法广播。

t25 = torch.ones(2, 4)
# t2的shape为3×4
t2 + t25
# RuntimeError

高维张量的广播

高维张量的广播原理与低维张量的广播原理一致:

t3 = torch.zeros(2, 3, 4)
t3
# tensor([[[0., 0., 0., 0.],
#          [0., 0., 0., 0.],
#          [0., 0., 0., 0.]],#         [[0., 0., 0., 0.],
#         [0., 0., 0., 0.],
#         [0., 0., 0., 0.]]])t31 = torch.ones(2, 3, 1)
t31
# tensor([[[1.],
#          [1.],
#          [1.]],#         [[1.],
#          [1.],
#          [1.]]])t3+t31
# tensor([[[1., 1., 1., 1.],
#          [1., 1., 1., 1.],
#          [1., 1., 1., 1.]],#         [[1., 1., 1., 1.],
#          [1., 1., 1., 1.],
#          [1., 1., 1., 1.]]])

总结

维度相同时,如果对应分量不同,但有一个为1,就可以广播。

不同维度计算中的广播

对于不同维度的张量,我们首先可以将低维的张量升维,然后依据相同维度不同形状的张量广播规则进行广播。

低维向量的升维也非常简单,只需将更高维度方向的形状填充为1即可:

# 创建一个二维向量
t2 = torch.arange(4).reshape(2, 2)
t2
# tensor([[0, 1],
#         [2, 3]])# 创建一个三维向量
t3 = torch.zeros(3, 2, 2)
t3t2 + t3
# tensor([[[0., 1.],
#          [2., 3.]],#         [[0., 1.],
#          [2., 3.]],#         [[0., 1.],
#          [2., 3.]]])

t3t2的相加,就相当于1×2×23×2×2的两个张量进行计算,广播规则与低维张量一致。

相信看完本节,你已经充分掌握了广播机制的运算规则:

  • 维度相同时,如果对应分量不同,但有一个为1,就可以广播
  • 维度不同时,只需将低维向量的更高维度方向的形状填充为1即可

Pytorch张量操作大全:

Pytorch使用教学1-Tensor的创建
Pytorch使用教学2-Tensor的维度
Pytorch使用教学3-特殊张量的创建与类型转化
Pytorch使用教学4-张量的索引
Pytorch使用教学5-视图view与reshape的区别
Pytorch使用教学6-张量的分割与合并
Pytorch使用教学7-张量的广播
Pytorch使用教学8-张量的科学运算
Pytorch使用教学9-张量的线性代数运算
Pytorch使用教学10-张量操作方法大总结

在这里插入图片描述

http://www.ds6.com.cn/news/48548.html

相关文章:

  • 广州正规的网站建设全网营销的公司
  • 服装鞋帽 网站建设seo网站培训班
  • 承德吧关键词优化价格表
  • 哪个网站可以做公众号封面长沙百度开户
  • 企业网站开发实训总结友情链接交换统计表
  • 长沙专业网站制作黄冈便宜的网站推广怎么做
  • html5做静态网站电商培训基地
  • 网站是哪个公司做上海百度关键词优化公司
  • 广州b2b网站建设做网站流程
  • 网站栏目类型女装关键词排名
  • 电商网站建设方案PPT成人职业技术培训学校
  • 郴州网签查询seo平台是什么意思
  • wordpress修改发布页面插件吉林关键词排名优化软件
  • 顺德网站建设哪家好优化建站
  • 网站默认图外贸网站营销推广
  • 模板网站建站aso平台
  • 更合高明网站建设关键词排名优化工具有用吗
  • 网站建设公司招聘优秀网站网页设计分析
  • 微网站用什么软件做百度快照的作用是什么
  • wordpress n点资讯主题seo文章代写平台
  • 网站开发+兼职项目谷歌sem
  • 天津做网站seo的湖南网络推广机构
  • 商业规划设计公司单页网站怎么优化
  • 腾讯云主机做网站最好的seo外包
  • 网站建设费用表知乎关键词排名优化工具
  • b2c网站策划书高州网站seo
  • 资讯网站做app一键搭建网站
  • 哪个网站做推销产品全球疫情最新数据统计
  • 免费广州网站开发维护万能的搜索引擎
  • 宁波正规网站建设使用方法百度爱采购