当前位置: 首页 > news >正文

青海网站建设公司哪家好百度推广步骤

青海网站建设公司哪家好,百度推广步骤,企业网站和信息化建设金蝶,亚马逊做qa的网站一、前向传播 作用于每一层的输入,通过逐层计算得到输出结果 二、反向传播 作用于网络输出,通过计算梯度由深到浅更新网络参数 三、整体架构 层次结构:逐层变换数据 神经元:数据量、矩阵大小(代表输入特征的数量…

一、前向传播

作用于每一层的输入,通过逐层计算得到输出结果

二、反向传播

作用于网络输出,通过计算梯度由深到浅更新网络参数
在这里插入图片描述

三、整体架构

层次结构:逐层变换数据
神经元:数据量、矩阵大小(代表输入特征的数量)

x : [ 1 , 3 ] x:[1,3] x[1,3]
w 1 : [ 3 , 4 ] w_1:[3,4] w1[3,4]
h i d d e n l a y e r 1 : [ 1 , 4 ] hidden layer1:[1,4] hiddenlayer1[1,4]
w 2 : [ 4 , 4 ] w_2:[4,4] w2[4,4]
h i d d e n l a y e r 2 : [ 1 , 4 ] hidden layer2:[1,4] hiddenlayer2[1,4]
w 3 : [ 4 , 1 ] w_3:[4,1] w3[4,1]
在这里插入图片描述

非线性操作加在每一步矩阵计算之后,增加神经网络的非线性。没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘罢了。

在这里插入图片描述

四、神经元个数对结果的影响(Stanford例子)

Stanford可视化的神经网络,可以自行调参数试试

1、 num_neurons:1

将神经元设置为1,查看效果

layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc',  num_neurons:1, activation: 'tanh'});
layer_defs.push({type:'fc', num_neurons:1, activation: 'tanh'});
layer_defs.push({type:'softmax', num_classes:2});net = new convnetjs.Net();
net.makeLayers(layer_defs);trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

查看circle data,可以看出效果不佳,看上去像切了一刀。
在这里插入图片描述

2、 num_neurons:2

将神经元设置为2,查看效果

layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc', num_neurons:2, activation: 'tanh'});
layer_defs.push({type:'fc', num_neurons:2, activation: 'tanh'});
layer_defs.push({type:'softmax', num_classes:2});net = new convnetjs.Net();
net.makeLayers(layer_defs);trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

查看circle data,可以看出效果一般,看上去像切了两刀,抛物线状。
在这里插入图片描述

3、 num_neurons:3

将神经元设置为3,查看效果

layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc', num_neurons:3, activation: 'tanh'});
layer_defs.push({type:'fc', num_neurons:3, activation: 'tanh'});
layer_defs.push({type:'softmax', num_classes:2});net = new convnetjs.Net();
net.makeLayers(layer_defs);trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

查看circle data,可以看出效果较好。
在这里插入图片描述

五、正则化

正则化 R ( w ) R(w) R(w)的作用:稳定时出现平滑边界
在这里插入图片描述

六、参数个数对结果的影响

在这里插入图片描述

七、激活函数

S i g m i o d Sigmiod Sigmiod:数值较大或较小时,梯度约为0,出现梯度消失问题
R e l u Relu Relu:当前主要使用的激活函数
在这里插入图片描述

八、数据预处理

在这里插入图片描述

九、参数初始化

通常我们都使用随机策略来进行参数初始化

十、DROP-OUT(传说中的七伤拳)

过拟合是神经网络非常头疼的一个问题!
左图是全连接神经网络,右图在神经网络训练过程中,每一层随机杀死部分神经元。DROP-OUT是防止神经网络过于复杂,进行随机杀死神经元的一种方法。
在这里插入图片描述

http://www.ds6.com.cn/news/48295.html

相关文章:

  • 乡镇网站建设网页制作工具有哪些
  • 做的网站老被攻击百度网址大全旧版
  • 用vs2013做网站登录龙斗seo博客
  • 宁波网站建设公司哪个好广东省广州市白云区
  • 装修网线专业seo推广
  • 那个视频网站可以做gif常州seo外包公司
  • 做网站中二级导航链接到一级导航网络推广免费平台
  • 网站服务器怎么配网络服务有限公司
  • 建设网站德州网络服务提供者不履行法律行政法规规定
  • 做网站需要什么服务器搜索引擎优化seo怎么做
  • 做企业门户网站都免费网站建设哪个好
  • 武汉做网站比较好的公司百度搜索关键词
  • 企业营销网站建设规划产品市场推广方案
  • html5 经典网站苏州seo网站公司
  • 用织梦做的网站怎么管理湖南优化推广
  • 网站logo织梦怎么做市场调研与分析
  • 域名转移 网站访问广告投放这个工作难不难做
  • 做网站和app哪类商标自己如何做网站
  • 洛阳青峰网络科技有限公司工作怎么样seo网络优化师
  • 做视频采集网站违法吗中国疫情最新消息
  • 广州外贸b2b网站建设crm管理系统
  • 网站首页图片制作网络seo推广
  • 万网个人网站有什么推广产品的渠道
  • 如何做购物网站的教程详细的营销推广方案
  • wordpress 额外css专业搜索引擎seo服务商
  • 如何设计培训课程网页搜索优化软件
  • 合理规划网站结构seo关键词优化推广外包
  • 福永自适应网站建网站搭建流程
  • 用bootstrap做的外国网站seo舆情优化
  • 免费网站教程长春网站制作系统