当前位置: 首页 > news >正文

门户网站导航建设方案百度推广登陆网址

门户网站导航建设方案,百度推广登陆网址,网站推广的基本方式,阿里云网站备案入口非精读BERT-b站有讲解视频(跟着李沐学AI) (大佬好厉害,讲的比直接看论文容易懂得多) 写在前面 在计算MLM预训练任务的损失函数的时候,参与计算的Tokens有哪些?是全部的15%的词汇还是15%词汇中真…

非精读BERT-b站有讲解视频(跟着李沐学AI)
(大佬好厉害,讲的比直接看论文容易懂得多)

写在前面

  1. 在计算MLM预训练任务的损失函数的时候,参与计算的Tokens有哪些?是全部的15%的词汇还是15%词汇中真正被Mask的那些tokens?
    首先在每一个训练序列中以15%的概率随机地选中某个token位置用于预测,假如是第i个token被选中,则会被替换成以下三个token之一:
    1)80%的时候是[MASK]。如,my dog is hairy——>my dog is [MASK]
    2)10%的时候是随机的其他token。如,my dog is hairy——>my dog is apple
    3)10%的时候是原来的token(保持不变,个人认为是作为2)所对应的负类)。如,my dog is hairy——>my dog is hairy

  2. 在实现损失函数的时候,怎么确保没有被 Mask 的函数不参与到损失计算中去;
    label_weights就像一个过滤器,将未mask的字的loss过滤掉了。(建议看源码,我没有看代码)

  3. BERT的三个Embedding为什么直接相加?
    https://www.zhihu.com/question/374835153

  4. BERT的优缺点分别是什么?
    在本篇论文的结论中最大贡献是双向性
    选了选双向性带来的不好是什么?做一个选择会得到一些,也会失去一些。
    缺点是:与GPT(Improving Language Understanding by Generative Pre-Training)比,BERT用的是编码器,GPT用的是解码器。BERT做机器翻译、文本的摘要(生成类的任务)不好做。
    但分类问题在NLP中更常见。
    完整解决问题的思路:在一个很大的数据集上训练好一个很宽很深的模型,可以用在很多小的问题上,通过微调来全面提升小数据的性能(在计算机视觉领域用了很多年),模型越大,效果越好(很简单很暴力)。
    BERT使用的数据量级很大(BERTbase是1亿,BERTlarge是3亿{BERT}_{base}是1亿,{BERT}_{large}是3亿BERTbase1亿,BERTlarge3亿

  5. 你知道有哪些针对BERT的缺点做优化的模型?
    https://zhuanlan.zhihu.com/p/347846720
    未看,想看可以转到这里

  6. BERT怎么用在生成模型中?
    不知道,咋用?

贡献:

  1. 我们演示了双向预训练对语言表示的重要性。与Radford等人(2018)使用单向语言模型进行预训练不同,BERT使用MLM来实现预训练的深度双向表示。这也与Peters等人(2018a)形成了对比,后者使用了独立训练的 left-to-right 和 right-to-left的LMs的浅层连接。
  2. 我们展示了预先训练的表征减少了对许多精心设计的任务特定架构的需求。BERT 是第一个基于微调的表征模型,它在大型句子级和标记级任务上实现了最先进的性能,优于许多特定于任务的架构。

BERT模型

由Transformer推叠而成,关于Transformer看《Attention Is All You Need》或我之前的文章。
BERT分为两个任务:

在这里插入图片描述

pre-traning:在预训练过程中,该模型在不同的预训练任务上对未标记的数据进行训练。
BERT使用两个无监督的任务对BERT进行预训练。这个步骤如上图的左侧所示。

  1. MLM(Masked Language Model):我们简单地随机屏蔽一些百分比的输入标记,然后预测这些掩蔽标记。在我们所有的实验中,我们随机屏蔽了每个序列中15%的所有WordPiece标记。我们只预测被掩蔽的单词,而不是重建整个输入。

  2. NSP(Next Sentence Prediction):一些如问答、自然语言推断等任务需要理解两个句子之间的关系,而MLM任务倾向于抽取token层次的表征,因此不能直接获取句子层次的表征。为了使模型能够有能力理解句子间的关系,BERT使用了NSP任务来预训练,简单来说就是预测两个句子是否连在一起。具体的做法是:对于每一个训练样例,我们在语料库中挑选出句子A和句子B来组成,50%的时候句子B就是句子A的下一句(标注为IsNext),剩下50%的时候句子B是语料库中的随机句子(标注为NotNext)。接下来把训练样例输入到BERT模型中,用[CLS]对应的C信息去进行二分类的预测。

fine-tuning:为了进行微调,首先使用预先训练好的参数初始化BERT模型,并使用从下游任务中获得的标记数据对所有参数进行微调。如上图右侧表示。
对于不同的下游任务,BERT结构都可能有轻微变化

BERT的输入:
分别是对应的token,分割和位置 embeddings,三者相加。

在这里插入图片描述

1.2 BERT的输出
介绍完BERT的输入,实际上BERT的输出也就呼之欲出了,因为Transformer的特点就是有多少个输入就有多少个对应的输出,如下图:
在这里插入图片描述

BERT的输出
C为分类token([CLS])对应最后一个Transformer的输出, 则代表其他token对应最后一个Transformer的输出。对于一些token级别的任务(如,序列标注和问答任务),就把输入到额外的输出层中进行预测。对于一些句子级别的任务(如,自然语言推断和情感分类任务),就把C输入到额外的输出层中,这里也就解释了为什么要在每一个token序列前都要插入特定的分类token。

参考
知乎

http://www.ds6.com.cn/news/4640.html

相关文章:

  • 青海网站开发今日新闻简报
  • 可以做引流网站的源码艾滋病多久可以查出来
  • 网站建设门户磁力猫官网cilimao
  • 哔哩哔哩h5播放器百度 seo排名查询
  • 在网站做网管工作都做什么武汉seo楚天
  • 网站模版怎么做的seo标题优化的方法
  • 深圳定制网站制作搜索图片
  • 动态网站建设实训心得网络推广宣传方式
  • 电商旅游网站策划书免费推广app软件下载
  • 视频聊天网站怎么做seo关键词排名优化案例
  • 成都网站建设多少钱百度关键字搜索排名
  • 有名的外贸公司长沙官网seo
  • 做响应式网站怎么设计北京seo公司工作
  • 花瓣按照哪个网站做的网络seo外包
  • 海外注册域名的网站香港旺道旺国际集团
  • 网站功能结构图 怎么做新产品的推广销售方法
  • 邢台各种类型网站建设售后完善百度账号设置
  • 2017网站开发前景网站监测
  • 做的好微信商城网站百度网盘首页
  • 什么是线上推广江苏网站seo
  • 专业手机网站建设公司排名百度推广客服投诉电话
  • 湖南网站建设360o湖南竞价优化专业公司
  • 大型网站seo方法如何做自己的网站
  • 网站中的公司地址怎么做20个排版漂亮的网页设计
  • 嘉定网站设计友情链接怎么购买
  • 国内网站备案要多久网站一般需要怎么推广
  • 网络营销推广外包服务网络seo是什么工作
  • 网站制作培训多少钱seo的中文名是什么
  • 镇江网站设计制作国内新闻最新消息十条
  • 网络团队深圳seo顾问