当前位置: 首页 > news >正文

专门做国外网站seo和sem哪个工资高

专门做国外网站,seo和sem哪个工资高,做网站运营话术,新手如何做网站运营数据总体结构 Nuscenes 数据结构 可以看一下我的blog如何下载完整版 mmdetection3d ├── mmdet3d ├── tools ├── configs ├── data │ ├── nuscenes │ │ ├── maps │ │ ├── samples │ │ ├── sweeps │ │ ├── lidarseg (o…

数据总体结构
在这里插入图片描述

Nuscenes 数据结构
可以看一下我的blog如何下载完整版

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── lidarseg (optional)
│   │   ├── v1.0-test
|   |   ├── v1.0-trainval

参考 mmdet3d

nuscenes_database/xxxxx.bin:训练数据集的每个 3D 包围框中包含的点云数据。nuscenes_infos_train.pkl:训练数据集,该字典包含了两个键值:metainfo 和 data_list。metainfo 包含数据集的基本信息,例如 categories, dataset 和 info_version。data_list 是由字典组成的列表,每个字典(以下简称 info)包含了单个样本的所有详细信息。info[‘sample_idx’]:样本在整个数据集的索引。info[‘token’]:样本数据标记。info[‘timestamp’]:样本数据时间戳。info[‘ego2global’]:自车到全局坐标的变换矩阵。(4x4 列表)info[‘lidar_points’]:是一个字典,包含了所有与激光雷达点相关的信息。info[‘lidar_points’][‘lidar_path’]:激光雷达点云数据的文件名。info[‘lidar_points’][‘num_pts_feats’]:点的特征维度。info[‘lidar_points’][‘lidar2ego’]:该激光雷达传感器到自车的变换矩阵。(4x4 列表)info[‘lidar_sweeps’]:是一个列表,包含了扫描信息(没有标注的中间帧)。info[‘lidar_sweeps’][i][‘lidar_points’][‘data_path’]:第 i 次扫描的激光雷达数据的文件路径。info[‘lidar_sweeps’][i][‘lidar_points’][lidar2ego’’]:当前激光雷达传感器到自车的变换矩阵。(4x4 列表)info[‘lidar_sweeps’][i][‘lidar_points’][‘ego2global’]:自车到全局坐标的变换矩阵。(4x4 列表)info[‘lidar_sweeps’][i][‘lidar2sensor’]:从主激光雷达传感器到当前传感器(用于收集扫描数据)的变换矩阵。(4x4 列表)info[‘lidar_sweeps’][i][‘timestamp’]:扫描数据的时间戳。info[‘lidar_sweeps’][i][‘sample_data_token’]:扫描样本数据标记。info[‘images’]:是一个字典,包含与每个相机对应的六个键值:'CAM_FRONT', 'CAM_FRONT_RIGHT', 'CAM_FRONT_LEFT', 'CAM_BACK', 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT'。每个字典包含了对应相机的所有数据信息。info[‘images’][‘CAM_XXX’][‘img_path’]:图像的文件名。info[‘images’][‘CAM_XXX’][‘cam2img’]:当 3D 点投影到图像平面时需要的内参信息相关的变换矩阵。(3x3 列表)info[‘images’][‘CAM_XXX’][‘sample_data_token’]:图像样本数据标记。info[‘images’][‘CAM_XXX’][‘timestamp’]:图像的时间戳。info[‘images’][‘CAM_XXX’][‘cam2ego’]:该相机传感器到自车的变换矩阵。(4x4 列表)info[‘images’][‘CAM_XXX’][‘lidar2cam’]:激光雷达传感器到该相机的变换矩阵。(4x4 列表)info[‘instances’]:是一个字典组成的列表。每个字典包含单个实例的所有标注信息。对于其中的第 i 个实例,我们有:info[‘instances’][i][‘bbox_3d’]:长度为 7 的列表,以 (x, y, z, l, w, h, yaw) 的顺序表示实例的 3D 边界框。info[‘instances’][i][‘bbox_label_3d’]:整数表示实例的标签,-1 代表忽略。info[‘instances’][i][‘velocity’]:3D 边界框的速度(由于不正确,没有垂直测量),大小为 (2, ) 的列表。info[‘instances’][i][‘num_lidar_pts’]:每个 3D 边界框内包含的激光雷达点数。info[‘instances’][i][‘num_radar_pts’]:每个 3D 边界框内包含的雷达点数。info[‘instances’][i][‘bbox_3d_isvalid’]:每个包围框是否有效。一般情况下,我们只将包含至少一个激光雷达或雷达点的 3D 框作为有效框。info[‘cam_instances’]:是一个字典,包含以下键值:'CAM_FRONT', 'CAM_FRONT_RIGHT', 'CAM_FRONT_LEFT', 'CAM_BACK', 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT'。对于基于视觉的 3D 目标检测任务,我们将整个场景的 3D 标注划分至它们所属于的相应相机中。对于其中的第 i 个实例,我们有:info[‘cam_instances’][‘CAM_XXX’][i][‘bbox_label’]:实例标签。info[‘cam_instances’][‘CAM_XXX’][i][‘bbox_label_3d’]:实例标签。info[‘cam_instances’][‘CAM_XXX’][i][‘bbox’]:2D 边界框标注(3D 框投影的矩形框),顺序为 [x1, y1, x2, y2] 的列表。info[‘cam_instances’][‘CAM_XXX’][i][‘center_2d’]:3D 框投影到图像上的中心点,大小为 (2, ) 的列表。info[‘cam_instances’][‘CAM_XXX’][i][‘depth’]:3D 框投影中心的深度。info[‘cam_instances’][‘CAM_XXX’][i][‘velocity’]:3D 边界框的速度(由于不正确,没有垂直测量),大小为 (2, ) 的列表。info[‘cam_instances’][‘CAM_XXX’][i][‘attr_label’]:实例的属性标签。我们为属性分类维护了一个属性集合和映射。info[‘cam_instances’][‘CAM_XXX’][i][‘bbox_3d’]:长度为 7 的列表,以 (x, y, z, l, h, w, yaw) 的顺序表示实例的 3D 边界框。info[‘pts_semantic_mask_path’]:激光雷达语义分割标注的文件名。

OccNet 在 nuScenes 基础上推出的 OpenOcc 数据集,提供环视相机图像、3D occupancy 和 occupancy flow 标注等。数据集通过将 Lidar 数据体素化,生成精确的3D真值,支持场景理解和3D重建研究。这一数据集不仅适合静态场景分析,也能用于研究动态环境,为机器视觉等领域的进步提供重要资源。

Occnet 数据集
连接

OccNet
├── data/
│   ├── can_bus/
│   ├── nuscenes/
│   │   ├── maps/
│   │   ├── samples/
│   │   ├── sweeps/
│   │   ├── v1.0-test
│   │   ├── v1.0-trainval
│   │   ├── nuscenes_infos_temporal_train.pkl
│   │   ├── nuscenes_infos_temporal_val.pkl   
│   ├── occ_gt_release_v1_0/
│   │   ├── train/
│   │   ├── val/
│   │   ├── occ_gt_train.json
│   │   ├── occ_gt_val.json
│   │   ├── nuscenes_infos_temporal_train_occ_gt.pkl
│   │   ├── nuscenes_infos_temporal_val_occ_gt.pkl

Occpancy 里面的结构

└── Occpancy3D-nuScenes-V1.0|├── mini|├── trainval|   ├── imgs|   |   ├── CAM_BACK|   |   |   ├── n015-2018-07-18-11-07-57+0800__CAM_BACK__1531883530437525.jpg|   |   |   └── ...|   |   ├── CAM_BACK_LEFT|   |   |   ├── n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg|   |   |   └── ...|   |   └── ...|   |     |   ├── gts  |   |   ├── [scene_name]|   |   |   ├── [frame_token]|   |   |   |   └── labels.npz|   |   |   └── ...|   |   └── ...|   ||   └── annotations.json|└── test├── imgs└── annotations.json

imgs/ 包含由各种相机捕获的图像。
gts/ 包含每个样本的真值数据。[scene_name] 指定一系列帧,而 [frame_token] 指定序列中的单个帧。
annotations.json 包含数据集的元信息。
labels.npz 包含每一帧的 [semantics](语义)、[mask_lidar](雷达遮罩)和 [mask_camera](相机遮罩)。

annotations {"train_split": ["scene-0001", ...],                         <list> -- training dataset split by scene_name"val_split": list ["scene-0003", ...],                      <list> -- validation dataset split by scene_name"scene_infos" {                                             <dict> -- meta infos of the scenes    [scene_name]: {                                         <str> -- name of the scene.  [frame_token]: {                                    <str> -- samples in a scene, ordered by time"timestamp":                                <str> -- timestamp (or token), unique by sample"camera_sensor": {                          <dict> -- meta infos of the camera sensor[cam_token]: {                          <str> -- token of the camera"img_path":                         <str> -- corresponding image file path, *.jpg"intrinsic":                        <float> [3, 3] -- intrinsic camera calibration"extrinsic":{                       <dict> -- extrinsic parameters of the camera"translation":                  <float> [3] -- coordinate system origin in meters"rotation":                     <float> [4] -- coordinate system orientation as quaternion}   "ego_pose": {                       <dict> -- vehicle pose of the camera"translation":                  <float> [3] -- coordinate system origin in meters"rotation":                     <float> [4] -- coordinate system orientation as quaternion}                },...},"ego_pose": {                               <dict> -- vehicle pose"translation":                          <float> [3] -- coordinate system origin in meters"rotation":                             <float> [4] -- coordinate system orientation as quaternion},"gt_path":                                  <str> -- corresponding 3D voxel gt path, *.npz"next":                                     <str> -- frame_token of the previous keyframe in the scene "prev":                                     <str> -- frame_token of the next keyframe in the scene}]             }}
}
字段类型描述
train_splitlist以场景名分割的训练数据集
val_splitlist以场景名分割的验证数据集
scene_infosdict场景的元信息
[scene_name]str场景名称
[frame_token]str场景中的样本,按时间顺序排列
timestampstr时间戳(或标记),每个样本唯一
camera_sensordict摄像头传感器的元信息
[cam_token]str摄像头的标记
img_pathstr对应的图像文件路径,*.jpg
intrinsicfloat[3,3]摄像头内参校准
extrinsicdict摄像头外参
translationfloat[3]坐标系原点(以米为单位)
rotationfloat[4]坐标系方向(以四元数表示)
ego_posedict摄像头所在车辆的姿态
translationfloat[3]坐标系原点(以米为单位)
rotationfloat[4]坐标系方向(以四元数表示)
ego_posedict车辆姿态
translationfloat[3]坐标系原点(以米为单位)
rotationfloat[4]坐标系方向(以四元数表示)
gt_pathstr对应的3D体素真值路径,*.npz
nextstr场景中上一个关键帧的frame_token
prevstr场景中下一个关键帧的frame_token

榜单
连接

在这里插入图片描述

http://www.ds6.com.cn/news/44420.html

相关文章:

  • 注册公司需要啥资料网站性能优化
  • 上海企业网站模板建站百度统计代码
  • 女人做一级a网站免费怎样免费推广自己的网站
  • 物流系统规划课程建设网站黄页推广引流网站
  • 个人做网站开发指标站长工具天美传媒
  • 网站要交钱吗社区推广方法有哪些
  • 哪个网站做招聘海报比较好自己如何制作一个网站
  • excel做注册网站seo网站优化方案摘要
  • 怎么在招聘网站做评估如何做推广引流赚钱
  • 青岛免费建站网络推广阿里指数查询官网入口
  • 微博带动网站做排名打开百度
  • wordpress留言快速审核整站优化 快速排名
  • 安装下载app软件优化网络的软件
  • 有几个网站打不开优秀软文营销案例
  • 网页制作实训心得南宁seo平台标准
  • 做网站 创业 流程河南最近的热搜事件
  • wordpress webfontseo的优化策略有哪些
  • 中山手机网站建设哪家好软件开发需要多少资金
  • 包头网站建设价格11月将现新冠感染高峰
  • 百度seo提交seo厂家电话
  • 明星粉丝网站怎么做的郑州seo公司
  • 网站开发程序设计百度爱采购优化
  • 知名的政府网站建设服务商网站权重怎么提高
  • 网站开发和网站建设有什么不同哪里有网页设计公司
  • 江西做网站找谁2021年中国关键词
  • wordpress修改布局企业关键词优化公司
  • 外贸网站制作设计百度竞价关键词查询
  • 网站建设估价国际新闻最新消息十条摘抄
  • 国内外网站网络推广团队
  • php制作wap网站开发线上推广渠道有哪些方式