当前位置: 首页 > news >正文

怎么做网站的软文推广网站推广有哪些方式

怎么做网站的软文推广,网站推广有哪些方式,做网站pyton,合肥网站网页设计目录 透视变换矫正 选项识别匹配 QT 界面设计 引言:随着信息化的发展,计算机阅卷已经成为一种常规操作。在大型考试中,客观题基本不再 需要人工阅卷。本项目旨在开发一个基于OpenCV的高效答题卡识别系统,通过先进的图像处理和模…

目录

透视变换矫正

选项识别匹配

QT 界面设计


引言:随着信息化的发展,计算机阅卷已经成为一种常规操作。在大型考试中,客观题基本不再 需要人工阅卷。本项目旨在开发一个基于OpenCV的高效答题卡识别系统,通过先进的图像处理和模式识别技术,实现对答题卡的快速准确分析。

文章所有资源请看文末!

透视变换矫正

假如有一张答题卡平放在地面上,那我们怎样去找到答题卡的边界轮廓呢?

答案是透视变换。首先我们需要找到答题卡的轮廓才能对选项做各种处理呀,接下来就是对透视变换的方法说明了。

假设原始图像中的点为(x,y),目标图像中的对应点为(X,Y)。透视变换可以用一个 3x3 的矩阵M来描述:

\begin{bmatrix} X\\ Y\\ 1 \end{bmatrix}=M\times \begin{bmatrix} x\\ y\\ 1 \end{bmatrix}

其中,矩阵M的元素取决于原始四边形和目标四边形顶点的坐标。其核心原理在于通过建立原始图像和目标图像之间的对应点关系,来计算一个变换矩阵

综上所述,使用透视变换扫描得到答题卡边界具体步骤如下:

  1. 找到原始图像的4个顶点和目标图像的4个顶点
  2. 根据8个顶点构造原始图像到目标图像的变换矩阵
  3. 依据变换矩阵,实现原始图像到目标图像的变换,完成倾斜矫正

注意:用于构造变换矩阵使用的原始图像的4个顶点和目标图像的4个顶点的位置必须是匹配的,也就是说,要将左上、右上、左下、右下4个顶点按照相同的顺序排列。

OK,下面我们直接根据代码来进行说明。

import cv2
import math
import numpy as np# x坐标
def sortBy_x(pt):return pt[0]# y坐标
def sortBy_y(pt):return pt[1]def correct(path):try:answerSheet = cv2.imread(path)gray = cv2.cvtColor(answerSheet, cv2.COLOR_BGR2GRAY)blurred = cv2.GaussianBlur(gray, (3, 3), 0)canny = cv2.Canny(blurred, 75, 200)contours, Hierarchy = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)if len(contours) == 1:result_contour = contours[0]else:max_length = -1index = -1for i, contour in enumerate(contours):length = cv2.arcLength(contour, True)if length > max_length:max_length = lengthindex = iresult_contour = contours[index]pts = cv2.approxPolyDP(result_contour, 0.02 * cv2.arcLength(result_contour, True), True)if len(pts) != 4:raise ValueError("透视变换需要四个点,但检测到的点数量为{}".format(len(pts)))pts = np.array([pt[0] for pt in pts])  # 提取点坐标print(pts)pts = sorted(pts, key=sortBy_x)print(pts)pts = sorted(pts, key=sortBy_y)print(pts)print(pts[0][0])width1 = math.sqrt((pts[0][0] - pts[1][0]) ** 2 + (pts[0][1] - pts[1][1]) ** 2)width2 = math.sqrt((pts[2][0] - pts[3][0]) ** 2 + (pts[2][1] - pts[3][1]) ** 2)width = int(max(width1, width2))height1 = math.sqrt((pts[0][0] - pts[3][0]) ** 2 + (pts[0][1] - pts[3][1]) ** 2)height2 = math.sqrt((pts[2][0] - pts[1][0]) ** 2 + (pts[2][1] - pts[1][1]) ** 2)height = int(max(height1, height2))pts_dst = np.array([[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]], dtype="float32")pts_src = np.array(pts, dtype="float32")M = cv2.getPerspectiveTransform(pts_src, pts_dst)birdMat = cv2.warpPerspective(answerSheet, M, (width, height))return birdMatexcept Exception as e:print(f"Error in correct: {e}")return None

1、首先对读取的图像进行一系列预处理操作:灰度转换、滤波、边缘检测等以凸显图像特征

2、使用cv2.findContours查找图像轮廓

当轮廓数量为1时,直接将其结果作为轮廓。

否则通过计算 每个轮廓的弧长,找到弧长最长的轮廓作为结果轮廓。

3、使用cv2.approxPolyDP函数对结果轮廓进行多边形逼近,得到近似的顶点坐标

4、将顶点坐标提取出来,并分别按照x坐标和y坐标进行排序,同时计算相邻两点之间的距离,取最大值作为宽度和高度,并据此计算目标顶点

5、cv2.getPerspectiveTransfor计算变换矩阵Mcv2.warpPerspective根据变换矩阵对原始图像进行透视变换,得到矫正后的图像

效果如下:

选项识别匹配

答题卡轮廓边界得到之后就是对选项的处理了。

import cv2
import numpy as np
import mathdef sortBy_x(pt):return pt[0]def sortBy_y(pt):return pt[1]def recognition(path, imageIndex):try:answerSheet = cv2.imread(path)gray = cv2.cvtColor(answerSheet, cv2.COLOR_BGR2GRAY)blurred = cv2.GaussianBlur(gray, (3, 3), 0)canny = cv2.Canny(blurred, 75, 200)contours, _ = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)if len(contours) == 1:result_contour = contours[0]else:max_length = -1index = -1for i, contour in enumerate(contours):length = cv2.arcLength(contour, True)if length > max_length:max_length = lengthindex = iresult_contour = contours[index]pts = cv2.approxPolyDP(result_contour, 0.02 * cv2.arcLength(result_contour, True), True)if len(pts) != 4:raise ValueError("识别需要四个点,但检测到的点数量为{}".format(len(pts)))pts = np.array([pt[0] for pt in pts])pts = sorted(pts, key=sortBy_x)pts = sorted(pts, key=sortBy_y)width1 = math.sqrt((pts[0][0] - pts[1][0]) ** 2 + (pts[0][1] - pts[1][1]) ** 2)width2 = math.sqrt((pts[2][0] - pts[3][0]) ** 2 + (pts[2][1] - pts[3][1]) ** 2)width = int(max(width1, width2))height1 = math.sqrt((pts[0][0] - pts[3][0]) ** 2 + (pts[0][1] - pts[3][1]) ** 2)height2 = math.sqrt((pts[2][0] - pts[1][0]) ** 2 + (pts[2][1] - pts[1][1]) ** 2)height = int(max(height1, height2))pts_dst = np.array([[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]], dtype="float32")pts_src = np.array(pts, dtype="float32")M = cv2.getPerspectiveTransform(pts_src, pts_dst)birdMat = cv2.warpPerspective(answerSheet, M, (width, height))cv2.imshow("original", birdMat)#################   识别   ##############################gray_birdMat = cv2.cvtColor(birdMat, cv2.COLOR_BGR2GRAY)_, target = cv2.threshold(gray_birdMat, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)cv2.imshow("Img", target)element = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))target = cv2.dilate(target, element)cv2.imshow("image", target)# 提取选项contours, _ = cv2.findContours(target, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# print(contours)selected_contours = [c for c in contours if cv2.boundingRect(c)[2] > 20 and cv2.boundingRect(c)[3] > 20]answerSheet_con = cv2.cvtColor(target, cv2.COLOR_GRAY2BGR)cv2.drawContours(answerSheet_con, selected_contours, -1, (0, 0, 255), 2)# 选项定位、二维数组存储radius = []center = []for contour in selected_contours:(x, y), r = cv2.minEnclosingCircle(contour)radius.append(r)center.append((int(x), int(y)))x_min = min(center, key=lambda x: x[0])[0]x_max = max(center, key=lambda x: x[0])[0]x_interval = (x_max - x_min) // 4y_min = min(center, key=lambda x: x[1])[1]y_max = max(center, key=lambda x: x[1])[1]y_interval = (y_max - y_min) // 4classed_contours = [[[] for _ in range(5)] for _ in range(5)]for i, point in enumerate(center):index_x = round((point[0] - x_min) / x_interval)index_y = round((point[1] - y_min) / y_interval)classed_contours[index_y][index_x] = selected_contours[i]colors = [(0, 0, 255), (255, 0, 255), (0, 255, 255), (255, 0, 0), (0, 255, 0)]test_result = cv2.cvtColor(target, cv2.COLOR_GRAY2BGR)for i in range(5):for j in range(5):if len(classed_contours[i][j]) > 0:cv2.drawContours(test_result, classed_contours[i][j], -1, colors[i], 2)# 答案自定义,只有 5个选项correct_answers = [0, 4, 4, 2, 1]# 定义选项位置result_count = np.zeros((5, 5), dtype=int)re_rect = [[cv2.boundingRect(contour) for contour in row] for row in classed_contours]count_roi = np.zeros((5, 5), dtype=np.float32)min_count = 999max_count = -1for i in range(5):for j in range(5):if len(classed_contours[i][j]) > 0:rect = re_rect[i][j]tem = target[rect[1]:rect[1] + rect[3], rect[0]:rect[0] + rect[2]]count = cv2.countNonZero(tem)if count > max_count:max_count = countif count < min_count:min_count = countcount_roi[i][j] = countmean = (max_count - min_count) // 2option_diff = np.abs(count_roi - max_count)for i in range(5):for j in range(5):if option_diff[i][j] < mean:result_count[i][j] += 1# 进行审阅label_answer = birdMat.copy()correct_count = 0wrong_answers = {}for i in range(5):selected = []for j in range(5):if result_count[i][j] == 1:selected.append(j)if j == correct_answers[i]:cv2.drawContours(label_answer, classed_contours[i][j], -1, (255, 0, 0), 2)else:cv2.drawContours(label_answer, classed_contours[i][j], -1, (0, 0, 255), 2)# 记录题目数量、正确题数、错题if len(selected) == 0:continue  # 未作答,不做任何处理elif len(selected) == 1:if selected[0] == correct_answers[i]:correct_count += 1else:wrong_answers[i + 1] = chr(65 + selected[0])  # 错误选项else:blue_count = sum(1 for j in selected if j == correct_answers[i])red_count = len(selected) - blue_countif blue_count > 0 and red_count > 0:wrong_answers[i + 1] = '多选'total_questions = len(correct_answers)score = correct_count / total_questions * 100data = {"序号": "{:02}".format(imageIndex + 1),"成绩": score,"题目总数": total_questions,"错题": str(wrong_answers),"正确题数": correct_count}return label_answer, dataexcept Exception as e:print(f"Error in recognition: {e}")return None, None

1、首先仍就是图像预处理,这通常会使得我们更易于提取选项,得到其位置。将变换后的图像转为灰度图并进行反二阈值化凸显选项,随后进行膨胀操作以连接断开的部分或填充小的空洞。

2、提取选项轮廓。通过cv2.findContours得到所有轮廓,随后对每个轮廓进行筛选,只有宽度和高度均大于20像素的轮廓才会被保留下来,这样就能够得到选项了。

3、选项定位与分类。计算每个符合条件的轮廓的最小外接圆的圆心和半径。根据圆心坐标,将选项按照水平和垂直方向进行分类并存储到二维数组中。

4、答案识别与审阅。

  • 自定义正确答案,用数字标识答案位置,默认从0开始。
  • 为每个选项区域计算非零像素的数量。
  • 通过计算得到的数量与平均值,确定每个选项的选择情况并存储到二维数组中。

5、审阅结果展示与数据统计。比较二维数组与正确答案,绘制正确和错误选项的轮廓,正确为蓝色,错误为红色;同时统计正确题数、计算分数,并将相关数据存储到字典中。

效果如下:

QT 界面设计

        本次界面设计使用的是pyqt5,我也只是初学,所以做的界面不是很好,但也勉强还算看的过眼吧。这个界面其实就是把变换后的图像和识别检测的结果弄到展示窗口,然后把记录的数据信息这些保存到excel表而已,说实在的还是太简陋了呀。OK,下面我们直接看效果吧。

答题卡识别

        好的,以上就是本次项目的所有内容了,希望对大家有所帮助呀,有疑问的可以评论或私聊我解答哟!

文章所有资源有需要的可自取

百度网盘链接: https://pan.baidu.com/s/1pFeaKRGAwF1zfip_wqt_dQ         提取码: 0bw7

http://www.ds6.com.cn/news/39768.html

相关文章:

  • 品牌网站开发neotv
  • 帮忙做网站百度爱采购推广怎么收费
  • 网站建设方面的书搜索引擎营销怎么做
  • 温州做网站seo排名啥意思
  • 网站开发可以用两种语言吗百度公司官网入口
  • 广州网站建设建航科技公司广告开户
  • wordpress 地理位置签到百度seo软件首选帝搜软件
  • 在淘宝做印刷网站怎么办理创建一个网站需要什么
  • 网站建设评审验收会议主持词seo整站优化公司持续监控
  • 和镜像网站做友链免费网络推广
  • wordpress 国内镜像seo品牌优化
  • 大连网站公司设计站长之家素材
  • 织梦可以做婚纱影楼网站吗网络推广网站推广
  • 网站打开慢的解决方法网站域名服务器查询
  • 做网站的实验报告精准获客
  • 网页视频下载器app免费小辉seo
  • 乌鲁木齐网站建设制作教育机构网站
  • 好看的做地图分析图的网站谷歌seo顾问
  • 西安优化网站推广排位及资讯
  • 关于做教育新闻的网站友情链接交易购买
  • 北京网站快速备案太原网站推广公司
  • 网站建设基本流程网络推广网站建设
  • 做一个静态网站导航要多少钱网站推广服务报价表
  • 西安网站维护兼职网址ip地址查询工具
  • 万户高端网站建设媒介星软文平台
  • 广州思盾互动网站建设公司百度的广告怎么免费发布
  • 长沙网站建设公司哪家专业关键词查询工具有哪些
  • 网站设计常用字体重庆森林台词
  • asp网站开发 pdf百度扫一扫网页版
  • 在万网申请的域名_需要把万网的账户密码给做网站的吗google年度关键词