当前位置: 首页 > news >正文

网站设计步骤及图解百度小说排名

网站设计步骤及图解,百度小说排名,建设公司网站的重要意义,做网站后期要收维护费吗文章目录 1. 目标检测算法分类2. 区域卷积神经网络2.1 R-CNN2.2 Fast R-CNN2.3 Faster R-CNN2.4 Mask R-CNN2.5 速度和精度比较 3. 单发多框检测(SSD)4. YOLO 1. 目标检测算法分类 目标检测算法主要分两类:One-Stage与Two-Stage。One-Stage与…

文章目录

    • 1. 目标检测算法分类
    • 2. 区域卷积神经网络
      • 2.1 R-CNN
      • 2.2 Fast R-CNN
      • 2.3 Faster R-CNN
      • 2.4 Mask R-CNN
      • 2.5 速度和精度比较
    • 3. 单发多框检测(SSD)
    • 4. YOLO

1. 目标检测算法分类

目标检测算法主要分两类:One-Stage与Two-Stage。One-Stage与Two-Stage是两种不同的思路,其各有各的优缺点。

One-Stage
    主要思路:直接通过卷积神经网络提取特征,预测目标的分类与定位;

Two-Stage
    主要思路:先进行区域生成,即生成候选区域(Region Proposal),在通过卷积神经网络预测目标的分类与定位;

优缺点

优缺点One-StageTwo-Stage
优点速度快;避免背景错误产生false positives; 学到物体的泛化特征精度高(定位、检出率);Anchor机制;共享计算量
缺点精度低(定位、检出率);小物体的检测效果不好速度慢;训练时间长;误报相对高

从目前看,在移动端一般使用 One-Stage算法。现在很难说,精度和准确率的问题,因为影响因素不仅仅取决于算法,还跟数据集大小、图像标注质量、训练参数等有很大的关系。

主要算法

One-Stage:YOLO系列(v1-v8),SSD系列(R-SSD、DSSD、FSSD等),Retina-Net,DetectNet,SqueezeDet。

Two-Stage:RCNN系列(Fast-RCNN、Faster-RCNN、Mask-RCNN),SPPNet,R-FCN。


2. 区域卷积神经网络

2.1 R-CNN

在这里插入图片描述

使用启发式搜索算法来选择锚框。

使用预训练模型来对每个锚框抽取特征。

训练一个SVM来对类别分类。

训练一个线性回归模型来预测边缘偏移框。

当锚框每次选择的大小不同,我们如何使这些锚框称为一个batch呢?

兴趣区域(ROI)池化层

ROI Pooling

  • 给定一个锚框,均匀分割成 n × m \ n\times\ m  n× m块,输出每块里的最大值
  • 不管锚框多大,总是输出$\ nm\ $个值

在这里插入图片描述

2.2 Fast R-CNN

对图片整体抽取特征。

  • 不再对每一个锚框做CNN的特征抽取,而是对图片整体使用CNN进行特征抽取
  • 使用RoI池化层对每个锚框生成固定长度特征

在这里插入图片描述

2.3 Faster R-CNN

  • 使用一个区域提议网络来代替启发式搜索,来获得更好的锚框。
    在这里插入图片描述

2.4 Mask R-CNN

  • 如果有像素级别的标号,使用FCN来利用这些信息
  • 在无人车领域运用较多

在这里插入图片描述

在做像素级别预测时,边界位置不要发生太多的错位。

2.5 速度和精度比较

在这里插入图片描述

总结:

  • R-CNN是最早、也是最有名的一类基于锚框和CNN的目标检测算法
  • Fast/Faster R-CNN持续提升性能
  • Faster R-CNN和Mask R-CNN是在最求高精度场景下的常用算法

3. 单发多框检测(SSD)

SSD全称Single Shot Multibox Detector,是一种单阶段目标检测器。其优点是原始的YOLO和Faster R-CNN在推理速度和精度之间取得了更好的平衡。SSD模型是由Wei Liu等人在使用卷积神经网络(CNN)进行目标检测的研究中,提出的一种改进思路。

SSD用于图像分类、物体检测和语义分割等各种深度学习任务。相对于其他目标检测算法,SSD模型有更高的精度,而且速度也是非常快的。其主要思路是通过在CNN的最后几层添加多个预测层实现多尺度的目标检测,然后通过一个过滤策略对每个检测框进行筛选,最后输出最终的检测结果。

在这里插入图片描述

生成锚框

在这里插入图片描述

  • 对每个像素,生成多个以它为中心的锚框
  • 给定n个大小为 s 1 , s 2 , . . . , s n s_1,s_2,...,s_n s1,s2,...,sn m m m个高宽比,那么生成 n + m − 1 n+m-1 n+m1锚框,其大小和高宽比分别为:

( s 1 , r 1 ) , ( s 2 , r 1 ) , . . . , ( s n , r 1 ) , ( s 1 , r 2 ) , . . . , ( s 1 , r m ) (s_1,r_1),(s_2,r_1),...,(s_n,r_1),(s_1,r_2),...,(s_1,r_m) (s1,r1),(s2,r1),...,(sn,r1),(s1,r2),...,(s1,rm)

SSD模型

  • 一个基础网络来抽取特征,然后多个卷积层块来减半高宽
  • 在每段都生成锚框
    • 底部段来拟合小物体,顶部短来集合大物体
  • 对每个锚框预测类别和边缘框

总结:

  • SSD通过单神经网络来检测模型
  • 以每个像素为中心的产生多个锚框
  • 在多个段段输出上进行多尺度的检测

4. YOLO

You Only Look Once

YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好,所以在工业界也十分受欢迎。

Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。

在这里插入图片描述

yolo尽量让锚框不重叠。

  • SSD中锚框大量重叠,因此浪费了很多计算
  • yolo将图片均匀分成 S × S S\times S S×S个锚框
  • 每个锚框预测 B B B个边缘框
  • 后续版本(V2,V3,V4…)有持续改进

YOLO家族进化史(V1-V8)

  • YOLOv1
  • YOLOv2:对YOLOv1进行改进
  • YOLOv3:对YOLOv2进行改进
  • YOLOv4:对YOLOv3进行改进
  • YOLOv5:对YOLOv4进行改进
  • YOLOx:以YOLOv3作为基础网络进行改进
  • YOLOv6:由美团推出,更加适应GPU设备,算法思路类似YOLOv5(backbone+neck)+YOLOX(head)
  • YOLOv7:是YOLOv4团队的续作,检测算法与YOLOv4,v5类似
  • YOLOv8:是YOLOv5团队进一步开发的
http://www.ds6.com.cn/news/39736.html

相关文章:

  • wordpress 公众号插件seo标题优化的心得总结
  • 在线做ppt模板下载网站网络外包
  • 网站建设团队架构南宁seo做法哪家好
  • 做网站的时候卖过假货而出过事网站运营主要做什么
  • 外贸型企业网站建设seo多久可以学会
  • seo优缺点济南seo快速霸屏
  • 桂林网站建设公司长沙网站制作公司哪家好
  • 可以做数学题的网站河南企业网站推广
  • 自建网站模板下载网站建设营销推广
  • 鞍山玉佛苑电话是多少seo优化方案
  • 有哪些免费的视频网站嘉峪关seo
  • 男的和女的做那种短视频网站seo排名优化软件免费
  • 南京发布最新消息泽成杭州seo网站推广排名
  • 云南华琴网络科技有限公司网络优化行业的发展前景
  • 游戏网站建设多少线上宣传方案
  • 海外网站seo优化seo快速软件
  • 网站合同书自己个人怎样做电商
  • 中国企业网官方网站下载外贸网站推广服务
  • 中央纪委网站 举报 要这么做才有效独立站怎么建站
  • 二手网站哪些做的比较好营销管理制度范本
  • 国外交友网站怎么做地推接单平台网
  • 申请绿色网站如何在百度上做推广
  • 多语言网站建设价格app推广软件有哪些
  • 做食物网站应该考虑些什么意思台州做优化
  • 霸州建设局网站福州网站建设方案外包
  • 无锡市城乡和住房建设局网站株洲专业seo优化
  • 哪个视频网站有潮汕做爰视频个人网站设计成品
  • 做网站的行情外包公司是什么意思
  • 网站正在开发中免备案域名
  • wordpress10款音乐插件win10优化工具下载