当前位置: 首页 > news >正文

宜兴做网站多少钱百度热搜榜单

宜兴做网站多少钱,百度热搜榜单,seo应用领域,做国外网站销售216. 组合总和 III39. 组合总和40. 组合总和 II46. 全排列47. 全排列 II77. 组合 78. 子集 90. 子集 II 以上是力扣设计相关问题的题目。排列组合还是子集问题无非就是从序列 nums 中以给定规则取若干元素,主要有以下几类: 元素无重不可复选&#xff0…
216. 组合总和 III
39. 组合总和
40. 组合总和 II
46. 全排列
47. 全排列 II
77. 组合

78. 子集

90. 子集 II

以上是力扣设计相关问题的题目。排列组合还是子集问题无非就是从序列 nums 中以给定规则取若干元素,主要有以下几类:

  1. 元素无重不可复选,即 nums 中的元素都是唯一的,每个元素最多只能被使用一次,这也是最基本的形式。
  2. 元素可重不可复选,即 nums 中的元素可以存在重复,每个元素最多只能被使用一次。
  3. 元素无重可复选,即 nums 中的元素都是唯一的,每个元素可以被使用若干次。

以组合为例:

1.如果输入 nums = [2,3,6,7],和为 7 的组合应该只有 [7]

2.如果输入 nums = [2,5,2,1,2],和为 7 的组合应该有两种 [2,2,2,1] 和 [5,2]

3.如果输入 nums = [2,3,6,7],和为 7 的组合应该有两种 [2,2,3] 和 [7]

上面用组合问题举的例子,但排列、组合、子集问题都可以有这三种基本形式,所以共有 9 种变化。

除此之外,题目也可以再添加各种限制条件,比如让你求和为 target 且元素个数为 k 的组合,那这么一来又可以衍生出一堆变体,所以一般笔试很喜欢出这种题。

但无论怎么变化,其本质就是穷举所有解,而这些解呈现树形结构,使用回溯算法框架再稍微修改一些细节即可把这些问题一网打尽

回溯算法框架代码如下:

import java.util.ArrayList;
import java.util.List;public class BacktrackExample {private List<List<Object>> result = new ArrayList<>();public void backtrack(List<Object> path, List<Object> choices) {if (满足结束条件(path)) {result.add(new ArrayList<>(path));return;}for (Object choice : choices) {// 做选择path.add(choice);// 递归backtrack(path, choices);// 撤销选择path.remove(path.size() - 1);}}private boolean 满足结束条件(List<Object> path) {// 这里实现满足结束条件的逻辑return false; // 示例返回,替换为实际逻辑}public List<List<Object>> getResult() {return result;}}

问题一:当元素无重不可复选时,即 nums 中的元素都是唯一的,每个元素最多只能被使用一次:

// 组合/子集问题回溯算法框架
void backtrack(int[] nums, int start) {// 回溯算法标准框架for (int i = start; i < nums.length; i++) {// 做选择track.addLast(nums[i]);// 注意参数backtrack(nums, i + 1);// 撤销选择track.removeLast();}
}// 排列问题回溯算法框架
void backtrack(int[] nums) {for (int i = 0; i < nums.length; i++) {// 剪枝逻辑if (used[i]) {continue;}// 做选择used[i] = true;track.addLast(nums[i]);backtrack(nums);// 撤销选择track.removeLast();used[i] = false;}
}

 问题二:元素可重不可复选,即 nums 中的元素可以存在重复,每个元素最多只能被使用一次,其关键在于排序和剪枝

Arrays.sort(nums);
// 组合/子集问题回溯算法框架
void backtrack(int[] nums, int start) {// 回溯算法标准框架for (int i = start; i < nums.length; i++) {// 剪枝逻辑,跳过值相同的相邻树枝if (i > start && nums[i] == nums[i - 1]) {continue;}// 做选择track.addLast(nums[i]);// 注意参数backtrack(nums, i + 1);// 撤销选择track.removeLast();}
}Arrays.sort(nums);
// 排列问题回溯算法框架
void backtrack(int[] nums) {for (int i = 0; i < nums.length; i++) {// 剪枝逻辑if (used[i]) {continue;}// 剪枝逻辑,固定相同的元素在排列中的相对位置if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {continue;}// 做选择used[i] = true;track.addLast(nums[i]);backtrack(nums);// 撤销选择track.removeLast();used[i] = false;}
}

问题三:元素无重可复选,即 nums 中的元素都是唯一的,每个元素可以被使用若干次,只要删掉去重逻辑即可:

// 组合/子集问题回溯算法框架
void backtrack(int[] nums, int start) {// 回溯算法标准框架for (int i = start; i < nums.length; i++) {// 做选择track.addLast(nums[i]);// 注意参数backtrack(nums, i);// 撤销选择track.removeLast();}
}// 排列问题回溯算法框架
void backtrack(int[] nums) {for (int i = 0; i < nums.length; i++) {// 做选择track.addLast(nums[i]);backtrack(nums);// 撤销选择track.removeLast();}
}

只要从树的角度思考,这些问题看似复杂多变,实则改改 base case 就能解决。只要熟悉了该框架,再细致了解一下细节问题,相信排列组合子集问题都不是问题。

http://www.ds6.com.cn/news/39207.html

相关文章:

  • apicloud官网下载山东服务好的seo公司
  • wordpress文章分页付费seo的优化步骤
  • 广州市天河区网站设计公司文案代写
  • 建一个网站做cpa联盟免费舆情监测平台
  • 免费做网站公司哪家好电商网站设计
  • 珠海定制网站制作app开发需要多少费用
  • 我想看b站直播有哪些软件百度 seo优化作用
  • wordpress网站的跳出率很低白杨seo课程
  • 网站运营谁都可以做吗互联网广告公司
  • 站外推广策划书百度服务电话在线人工
  • 长春网站设计网站建设网站制作880元点击器免费版
  • 泉州北京网站建设推广方案策略怎么写
  • 外包做网站不付尾款360搜索引擎首页
  • 产品网站推广方案网站推广互联网推广
  • 网络营销的概念?长沙seo优化价格
  • 网站开发的app域名历史查询工具
  • 阿里巴巴做网站多少钱关键词有几种类型
  • 专门为网站建设服务的公司seo网络优化是什么意思
  • 网站建设审核推蛙网络
  • 什么叫利用网站做蜘蛛池平台代运营是什么意思
  • 网站开发 icon百度seo优化包含哪几项
  • wordpress比较火的主题windows优化大师靠谱吗
  • 自己怎么做商城网站视频教程中国新冠疫苗接种率
  • 网站建设教程速成优化设计五年级下册语文答案
  • 如何用frontpage做网站软文写作什么意思
  • 做网站页面设计报价慧达seo免登录发布
  • 网站换服务器有影响吗平台推广营销
  • 免费素材网站可商用百度助手手机下载
  • 两课测试网站怎么做的北京网站优化公司哪家好
  • 南京建设网站排名快速排名生客seo