当前位置: 首页 > news >正文

网站制作培训中心seo双标题软件

网站制作培训中心,seo双标题软件,做微信投票的网站5,句容市建设局网站理论基础、前中后序遍历的递归法和迭代法、层序遍历 1,二叉树的种类满二叉树完全二叉树二叉搜索树平衡二叉搜索树 2,存储方式链式存储线式存储 3,二叉树的遍历深度优先搜索前序遍历(递归法、迭代法)中序遍历&#xff0…

理论基础、前中后序遍历的递归法和迭代法、层序遍历

  • 1,二叉树的种类
    • 满二叉树
    • 完全二叉树
    • 二叉搜索树
    • 平衡二叉搜索树
  • 2,存储方式
    • 链式存储
    • 线式存储
  • 3,二叉树的遍历
    • 深度优先搜索
      • 前序遍历(递归法、迭代法)
      • 中序遍历(递归法、迭代法)
      • 后序遍历(递归法、迭代法)
    • 广度优先搜索
      • 层次遍历(迭代法、递归法)
  • 4,二叉树的定义

1,二叉树的种类

满二叉树

除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树。
请添加图片描述

完全二叉树

一个深度为k的有n个节点的二叉树,对树中的节点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。
请添加图片描述

二叉搜索树

二叉搜索树(Binary Search Tree),又名二叉排序树(Binary Sort Tree)。

二叉搜索树是具有有以下性质的二叉树:

若左子树不为空,则左子树上所有节点的值均小于或等于它的根节点的值。
若右子树不为空,则右子树上所有节点的值均大于或等于它的根节点的值。
左、右子树也分别为二叉搜索树。
请添加图片描述

平衡二叉搜索树

平衡二叉搜索树的任何结点的左子树和右子树高度最多相差1。,并且左右两个子树都是一棵平衡二叉树。
请添加图片描述

容器map、set、multimap、multiset的底层原理都是平衡二叉搜索树
所以map中key和set中的元素都是有序的

unordered map和unordered set的底层原理为哈希表

2,存储方式

分为链式存储和线式存储

链式存储

链式存储方式就用指针
请添加图片描述

线式存储

(用的少了解即可)

顺序存储的方式就是用数组。
请添加图片描述

线式存储时,有一点i,他的左孩子下标为2i+1,他的右孩子下标为2i+2

3,二叉树的遍历

分为深度优先搜索和广度优先搜索

深度优先搜索

分为前序遍历、中序遍历、后续遍历
请添加图片描述
写法可以分为递归法和迭代法

递归的底层原理是栈

确定递归函数的参数和返回值
确定终止条件
确定单层递归的逻辑

迭代法就是模拟递归的过程,因为递归的底层原理为栈,所以迭代法用栈展示

面试简单的可能需要写出简单的非递归代码

前序遍历(递归法、迭代法)

中左右
递归法:

class Solution {
public:void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;vec.push_back(cur->val);    // 中traversal(cur->left, vec);  // 左traversal(cur->right, vec); // 右}vector<int> preorderTraversal(TreeNode* root) {vector<int> result;traversal(root, result);return result;}
};

迭代法:
因为模拟栈的过程,前序遍历是中左右,但是栈是先进后出的,所以入栈顺序为右左中

访问顺序和处理顺序相同(后续遍历也是如此,所以稍作改动就可以变为后续遍历)

class Solution {
public:vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> st;vector<int> result;if (root == NULL) return result;st.push(root);while (!st.empty()) {TreeNode* node = st.top();                       // 中st.pop();result.push_back(node->val);if (node->right) st.push(node->right);           // 右(空节点不入栈)if (node->left) st.push(node->left);             // 左(空节点不入栈)}return result;}
};

中序遍历(递归法、迭代法)

左中右
递归法:

void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;traversal(cur->left, vec);  // 左vec.push_back(cur->val);    // 中traversal(cur->right, vec); // 右
}

迭代法:
访问顺序和处理顺序不同,所以代码和前后续遍历不同

class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;TreeNode* cur = root;while (cur != NULL || !st.empty()) {if (cur != NULL) { // 指针来访问节点,访问到最底层st.push(cur); // 将访问的节点放进栈cur = cur->left;                // 左} else {cur = st.top(); // 从栈里弹出的数据,就是要处理的数据(放进result数组里的数据)st.pop();result.push_back(cur->val);     // 中cur = cur->right;               // 右}}return result;}
};

后序遍历(递归法、迭代法)

左右中
递归法:

void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;traversal(cur->left, vec);  // 左traversal(cur->right, vec); // 右vec.push_back(cur->val);    // 中
}

迭代法:
访问顺序和处理顺序相同

class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {stack<TreeNode*> st;vector<int> result;if (root == NULL) return result;st.push(root);while (!st.empty()) {TreeNode* node = st.top();st.pop();result.push_back(node->val);if (node->left) st.push(node->left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈)if (node->right) st.push(node->right); // 空节点不入栈}reverse(result.begin(), result.end()); // 将结果反转之后就是左右中的顺序了return result;}
};

广度优先搜索

层次遍历(迭代法、递归法)

借助一个队列,保存每一层的节点

队列记录当前层的元素个数,弹出时按队列里储存的个数弹出

迭代法:

class Solution {
public:vector<vector<int>> levelOrder(TreeNode* root) {queue<TreeNode*> que;if (root != NULL) que.push(root);vector<vector<int>> result;while (!que.empty()) {int size = que.size();vector<int> vec;// 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();vec.push_back(node->val);if (node->left) que.push(node->left);if (node->right) que.push(node->right);}result.push_back(vec);}return result;}
};

递归法:

class Solution {
public:void order(TreeNode* cur, vector<vector<int>>& result, int depth){if (cur == nullptr) return;if (result.size() == depth) result.push_back(vector<int>());result[depth].push_back(cur->val);order(cur->left, result, depth + 1);order(cur->right, result, depth + 1);}vector<vector<int>> levelOrder(TreeNode* root) {vector<vector<int>> result;int depth = 0;order(root, result, depth);return result;}
};

4,二叉树的定义

struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
http://www.ds6.com.cn/news/33385.html

相关文章:

  • 用淘宝做公司网站网络营销专业如何
  • 微信 wordpress搜索网站seo排名优化方法
  • 做网站广告中敏感词会涉及到工商怎么把网站排名排上去
  • 网站敏感词汇线上营销怎么推广
  • 外贸型网站开发网络媒体发稿平台
  • 怎样优化网站 优帮云做网站找哪个公司好
  • 专业的网站开发公司站长工具排行榜
  • 系统难还是网站设计难做市场调研报告ppt
  • 全球购物网站大全哈尔滨最新消息
  • 中国工商网官方网站老铁外链
  • 旅游网站建设方案百度的关键词优化
  • php 用什么做网站服务器链接推广
  • 西瓜网络深圳网站建设 东莞网站建设app拉新
  • 外包网站会自己做原型吗网站查询域名ip
  • 网站怎么做才长春seo培训
  • 北京市住房和城乡建设部官方网站青岛关键词优化报价
  • 潍坊营销型网站建设大数据精准营销获客
  • 企业网站建设的定位上海排名优化推广工具
  • 维力安网站建设公司网络营销的主要传播渠道
  • 学生免费舆情监测平台官网seo优化交流
  • 深圳龙华做网站的手机百度高级搜索
  • 信阳网站seo今天新闻
  • wps2016怎么做网站百度网站网址是多少
  • 安徽网站优化多少钱seo快速建站
  • wordpress 换语言seo快速排名百度首页
  • 深圳网站建设首选全通网络市场营销实际案例
  • 足彩网站建设2023新闻热点事件
  • 网站建设的专业知识国内设计公司前十名
  • 可以做装修效果图的网站有哪些最有吸引力的营销模式
  • 网站接入查询排名点击软件怎样