红河学院网站建设广州优化防控措施
频率派和贝叶斯派
频率派认为可以通过大量实验,从样本推断总体。比如假定总体服从均值为μ\muμ,方差为σ\sigmaσ的分布。根据中心极限定理,是可以通过抽样估算总体的参数的,而且抽样次数越多,对总体的估计就越准确。需要指出的是,频率派的观点认为μ\muμ和σ\sigmaσ都是固定,就是说他们都是某个确定的值。
但实际上,实验次数越多,成本就越高,而且很多时候是没有办法进行多次试验的。这时候,频率派对总体参数的估计就会存在较大偏差。
贝叶斯派则认为,可以先对总体的参数进行粗略估计(先验概率),然后根据实验结果不断调整参数的估计值(后验概率)。而且,贝叶斯派认为参数并不是固定的,而是服从某个概率分布的值。
朴素贝叶斯法
独立同分布假设
假设训练数据集T=(x1,y1),(x2,y2),...,(xn,yn)T={(x_1,y_1) ,(x_2,y_2),...,(x_n,y_n)}T=(x1,y1),(x2,y2),...,(xn,yn),可以理解为每个xxx都代表了一个完整的case。比如x1x_1x1可以用x1(1)x_1^{(1)}x1(1)来表示第一个样本的第1个特征,而一个样本可以有多个特征,比如x1(k)x_1^{(k)}x1(k)就表示第1个样本的第kkk个特征;而y1y_1y1就表示这个x1x_1x1这个case所属的类。
书上还有一句话,训练集是独立同分布的。也就是说所使用的到的样本都是从同一个总体中拿出来的,自然就服从同一个分布;如果不服从同分布,也就意味着我们无法得到最终的模型,我们只能根据不同的case得到不同的模型。独立就是说各样本之间互不影响,得到什么样的yyy值,只要看自己有什么样的xxx就可以了,x1x_1x1不用去管x2x_2x2的y2y_2y2值是怎么得到的。
学习过程
朴素贝叶斯法的最终目的是通过训练集学习xxx和yyy的联合概率分布P(X,Y)P(X,Y)P(X,Y)。这样当我们知道某个测试样本的XXX,我们就可以根据联合概率分布求出YYY的概率分布。然后我们看哪个YYY能够让P(X,Y)P(X,Y)P(X,Y)最大,我们就把这个YYY作为这个测试样本XXX的类别。
我们假设YYY有kkk个不同的取值,也就是说样本一共有kkk类。而我们一共有nnn个特征,Xi(1),Xi(2),...,Xi(n)X_i^{(1)},X_i^{(2)},...,X_i^{(n)}Xi(1),Xi(2),...,Xi(n)。
而为了通过训练集学到联合概率分布P(X,Y)P(X,Y)P(X,Y),我们需要分别学到先验概率分布P(Y=ck)P(Y=c_k)P(Y=ck)以及条件概率分布P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)∣Y=ck)P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)}|Y=c_k)P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)∣Y=ck)
这是因为当我们拿到测试数据集的时候,我们面临的问题是求:
P(Y=ck∣X(1)=x(1),X(2)=x(2),...,X(n)=x(n))P(Y=c_k|X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)})P(Y=ck∣X(1)=x(1),X(2)=x(2),...,X(n)=x(n))
这是一个条件概率求解,而根据贝叶斯公式,我们知道:
P(A∣B)=P(A)P(B∣A)P(B)P(A|B)=\frac{P(A)P(B|A)}{P(B)}P(A∣B)=P(B)P(A)P(B∣A)
所以上面那个条件概率就等于:
P(Y=ck)P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)∣Y=ck)P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)), (1)\frac{P(Y=c_k)P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)}|Y=c_k)}{P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)})} \text{, \tag{1}}P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n))P(Y=ck)P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)∣Y=ck), (1)
而且我们知道朴素贝叶斯之所以朴素,就是因为这个算法假定各特征都是独立的。也就是说X(1)X^{(1)}X(1)、X(2)X^{(2)}X(2)……X(n)X^{(n)}X(n)的互不影响,没有关系。其实相当于是把问题简单化了。有了这个条件,公式1就可以进一步化简:
P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n))=∏i=1nP(X(i)=x(i))P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)})=\prod_{i=1}^nP(X^{(i)}=x^{(i)})P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n))=i=1∏nP(X(i)=x(i))
P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)∣Y=ck)=∏i=1nP(X(i)=x(i)∣Y=ck)P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)}|Y=c_k)=\prod_{i=1}^nP(X^{(i)}=x^{(i)}|Y=c_k)P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)∣Y=ck)=i=1∏nP(X(i)=x(i)∣Y=ck)
所以公式1最后就变成了:
f1=P(Y=ck)∏i=1nP(X(i)=x(i)∣Y=ck)∏i=1nP(X(i)=x(i))(2)f_1=\frac{P(Y=c_k)\prod_{i=1}^nP(X^{(i)}=x^{(i)}|Y=c_k)}{\prod_{i=1}^nP(X^{(i)}=x^{(i)})} \text{\tag{2}}f1=∏i=1nP(X(i)=x(i))P(Y=ck)∏i=1nP(X(i)=x(i)∣Y=ck)(2)
我们知道,现在有了样本X(i)=x(i)X^{(i)}=x^{(i)}X(i)=x(i),现在要求的是当f1f_1f1最大的时候,ckc_kck是多少?也就是说现在ckc_kck是未知量,而跟X(i)X^{(i)}X(i)相关的都是由数据集提供的,所以求f1f_1f1的最大值就等价于求f2f_2f2的最大值,二者的最大值不一样(我们也不关心),但取得最大值时的ckc_kck是相等的。
f2=P(Y=ck)∏i=1nP(X(i)=x(i)∣Y=ck)(3)f_2=P(Y=c_k)\prod_{i=1}^nP(X^{(i)}=x^{(i)}|Y=c_k) \text{\tag{3}}f2=P(Y=ck)i=1∏nP(X(i)=x(i)∣Y=ck)(3)
参数估计
极大似然估计
朴素贝叶斯法意味着我们要估计P(Y=ck)P(Y=c_k)P(Y=ck)以及P(X(i)=x(i)∣Y=ck)P(X^{(i)}=x^{(i)}|Y=c_k)P(X(i)=x(i)∣Y=ck)。
先验概率P(Y=ck)P(Y=c_k)P(Y=ck)的极大似然估计是:
P(Y=ck)=∑i=1nI(yi=ck)N,k=1,2...KP(Y=c_k)=\frac{\sum\limits_{i=1}^nI(y_i=c_k)}{N} \text ,k=1,2...KP(Y=ck)=Ni=1∑nI(yi=ck),k=1,2...K
而每个特征X(i)X^{(i)}X(i)都可能有很多个取值,所以假设第iii个特征X(i)X^{(i)}X(i)的可能取值为结合{ai1,ai2...aiSi}\lbrace{a_{i1},a_{i2}...a_{iS_i}}\rbrace{ai1,ai2...aiSi},也就是说我们假设第iii个特征可能的取值SiS_iSi种。
条件概率的极大似然估计是:P(X(i)=ail∣Y=ck)=∑i=1nI(xj(i)=ail,yi=ck)∑i=1nI(yi=ck)P(X^{(i)}=a_{il}|Y=c_k)=\frac{\sum\limits_{i=1}^n I(x^{(i)}_j=a_{il},y_i=c_k)}{\sum\limits_{i=1}^nI(y_i=c_k)}P(X(i)=ail∣Y=ck)=i=1∑nI(yi=ck)i=1∑nI(xj(i)=ail,yi=ck)
上式小标太多,解释一下,xj(i)x^{(i)}_jxj(i)表示第jjj个样本的第iii个特征,aila_{il}ail表示第iii个特征的取值为aila_{il}ail。
III为指示函数,也就是说当括号中的关系成立时,I=1I=1I=1,不成立时,I=0I=0I=0。
所以从这里也可以看出来,这个参数的估计过程就是“数数”。先验概率就是数Y=ckY=c_kY=ck出现多少次,占比多少。条件概率就是数Y=ckY=c_kY=ck的时候,x(i)x^{(i)}x(i)这个特征取aila_{il}ail出现多少次,占比多少。可想而知,这是一项庞大的“数数”工程。
贝叶斯估计
极大似然估计可能会发生一个比较尴尬的事情,比如我们就假设样本的第3个特征X(3)X^{(3)}X(3)在训练集中所有取值为{1,3,5}\lbrace1,3,5\rbrace{1,3,5},但是在测试集中,出现一个新值4。这时,如果按照极大似然法,条件概率P(X(i)=4∣Y=ck)=0P(X^{(i)}=4|Y=c_k)=0P(X(i)=4∣Y=ck)=0(因为训练集没有这个4,所以从训练集学到的条件概率就是0)。而目标函数f2f_2f2是一系列条件概率的累乘,所以最后无论其他特征的条件概率是多少,f2f_2f2恒等于0。
也就意味着学到的这个联合分布,过拟合了,对新出现的数据预测能力极差。
为了避免这一现象,现在需要引入贝叶斯估计,其实也可以理解为正则化的手段。具体的,条件概率的贝叶斯估计是:P(X(i)=ail∣Y=ck)=∑i=1nI(xj(i)=ail,yi=ck)+λ∑i=1nI(yi=ck)+SiλP(X^{(i)}=a_{il}|Y=c_k)=\frac{\sum\limits_{i=1}^n I(x^{(i)}_j=a_{il},y_i=c_k)+\lambda}{\sum\limits_{i=1}^nI(y_i=c_k)+S_i\lambda}P(X(i)=ail∣Y=ck)=i=1∑nI(yi=ck)+Siλi=1∑nI(xj(i)=ail,yi=ck)+λ
上式中,λ≥0\lambda\geq0λ≥0,显而易见,当λ=0\lambda=0λ=0的时候就是极大似然估计。根据习惯,经常取λ=1\lambda=1λ=1,此时称为拉普拉斯平滑。
同样,也为了避免先验概率等于0,同样可以引入贝叶斯估计:P(Y=ck)=∑i=1nI(yi=ck)+λN+KλP(Y=c_k)=\frac{\sum\limits_{i=1}^nI(y_i=c_k)+\lambda}{N+K\lambda}P(Y=ck)=N+Kλi=1∑nI(yi=ck)+λ
由于当λ=1\lambda=1λ=1,并且在样本量NNN越来越大的时候,λ\lambdaλ对先验概率和条件概率的影响就会越来越小,甚至忽略不计。这就是所谓的拉普拉斯平滑的思想。