当前位置: 首页 > news >正文

学习做网站多久搭建网站的步骤

学习做网站多久,搭建网站的步骤,丹阳市最新疫情,做c2c网站的弊端文章目录 强联通分量SCC概念例子有向图的DFS树代码例题讲解[POI2008] BLO-Blockade题面翻译题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 思路AC代码 【模板】割点(割顶)题目背景题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示…

文章目录

  • 强联通分量SCC
    • 概念
    • 例子
    • 有向图的DFS树
    • 代码
    • 例题讲解
      • [POI2008] BLO-Blockade
        • 题面翻译
        • 题目描述
        • 输入格式
        • 输出格式
        • 样例 #1
          • 样例输入 #1
          • 样例输出 #1
        • 思路
        • AC代码
      • 【模板】割点(割顶)
        • 题目背景
        • 题目描述
        • 输入格式
        • 输出格式
        • 样例 #1
          • 样例输入 #1
          • 样例输出 #1
        • 提示
      • 思路
      • AC代码

强联通分量SCC

SCC之前也有写博客讲解
戳这里

概念

  • 在有向图中, 如果两个点 u, v 满足同时存在从 u 到 v 和从 v 到 u 的路径, 则称两个点强连通
  • 如果有向图任意两个点强连通, 则称为强连通图. 有向图的极大强连通子图称为强连通分量
  • 注意到强连通关系是传递的,所以有向图可以划分为若干不交的强连通分量

例子

在这里插入图片描述

有向图的DFS树

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码

下面展示的是洛谷模板 缩点一题的代码
包含强联通分量和拓扑排序两部分

#include<bits/stdc++.h>
using namespace std;
const int N=10000+15;
int n,m,idx,timestap,top,s;
int p[N],head[N],sd[N],dfn[N],low[N];
int sta[N],vis[N];
int h[N],in[N],dist[N];
struct T
{int to;int ne;int fr;
}edge[N*10],ed[N*10];
void add(int x,int y)
{edge[++idx].ne=head[x];edge[idx].fr=x;edge[idx].to=y;head[x]=idx;
}
void tarjan(int x)
{low[x]=dfn[x]=++timestap;sta[++top]=x;vis[x]=1;for (int i=head[x];i;i=edge[i].ne){int v=edge[i].to;if (!dfn[v]) {tarjan(v);low[x]=min(low[x],low[v]);}else if (vis[v]){low[x]=min(low[x],low[v]);}}if (dfn[x]==low[x]){int y;while (y=sta[top--]){sd[y]=x;vis[y]=0;if (x==y) break;p[x]+=p[y];}}
}
int topo()
{queue <int> q;int tot=0;for (int i=1;i<=n;i++)if (sd[i]==i&&!in[i]){q.push(i);dist[i]=p[i];} while (!q.empty()){int k=q.front();q.pop();for (int i=h[k];i;i=ed[i].ne){int v=ed[i].to;dist[v]=max(dist[v],dist[k]+p[v]);in[v]--;if (in[v]==0) q.push(v);}}int ans=0;for (int i=1;i<=n;i++)ans=max(ans,dist[i]);return ans;
}
int main()
{scanf("%d%d",&n,&m);for (int i=1;i<=n;i++)scanf("%d",&p[i]);int u,v;for (int i=1;i<=m;i++){scanf("%d%d",&u,&v);add(u,v);}for (int i=1;i<=n;i++)if(!dfn[i])tarjan(i);for (int i=1;i<=m;i++){int x=sd[edge[i].fr],y=sd[edge[i].to];if (x!=y){ed[++s].ne=h[x];ed[s].to=y;ed[s].fr=x;h[x]=s;in[y]++;}}int ans=topo();printf("%d\n",ans);return 0;
}

例题讲解

[POI2008] BLO-Blockade

题面翻译

B 城有 n n n 个城镇, m m m 条双向道路。

每条道路连结两个不同的城镇,没有重复的道路,所有城镇连通。

把城镇看作节点,把道路看作边,容易发现,整个城市构成了一个无向图。

请你对于每个节点 i i i 求出,把与节点 i i i 关联的所有边去掉以后(不去掉节点 i i i 本身),无向图有多少个有序点 ( x , y ) (x,y) (x,y),满足 x x x y y y 不连通。

【输入格式】

第一行包含两个整数 n n n m m m

接下来 m m m 行,每行包含两个整数 a a a b b b,表示城镇 a a a b b b 之间存在一条道路。

【输出格式】

输出共 n n n 行,每行输出一个整数。

i i i 行输出的整数表示把与节点 i i i 关联的所有边去掉以后(不去掉节点 i i i 本身),无向图有多少个有序点 ( x , y ) (x,y) (x,y),满足 x x x y y y 不连通。

【数据范围】

n ≤ 100000 n\le 100000 n100000 m ≤ 500000 m\le500000 m500000

题目描述

There are exactly n n n towns in Byteotia.

Some towns are connected by bidirectional roads.

There are no crossroads outside towns, though there may be bridges, tunnels and flyovers. Each pair of towns may be connected by at most one direct road. One can get from any town to any other-directly or indirectly.

Each town has exactly one citizen.

For that reason the citizens suffer from loneliness.

It turns out that each citizen would like to pay a visit to every other citizen (in his host’s hometown), and do it exactly once. So exactly n ⋅ ( n − 1 ) n\cdot (n-1) n(n1) visits should take place.

That’s right, should.

Unfortunately, a general strike of programmers, who demand an emergency purchase of software, is under way.

As an act of protest, the programmers plan to block one town of Byteotia, preventing entering it, leaving it, and even passing through.

As we speak, they are debating which town to choose so that the consequences are most severe.

Task Write a programme that:

reads the Byteotian road system’s description from the standard input, for each town determines, how many visits could take place if this town were not blocked by programmers, writes out the outcome to the standard output.

给定一张无向图,求每个点被封锁之后有多少个有序点对(x,y)(x!=y,1<=x,y<=n)满足x无法到达y

输入格式

In the first line of the standard input there are two positive integers: n n n and m m m ( 1 ≤ n ≤ 100 000 1\le n\le 100\ 000 1n100 000, 1 ≤ m ≤ 500 000 1\le m\le 500\ 000 1m500 000) denoting the number of towns and roads, respectively.

The towns are numbered from 1 to n n n.

The following m m m lines contain descriptions of the roads.

Each line contains two integers a a a and b b b ( 1 ≤ a < b ≤ n 1\le a<b\le n 1a<bn) and denotes a direct road between towns numbered a a a and b b b.

输出格式

Your programme should write out exactly n n n integers to the standard output, one number per line. The i t h i^{th} ith line should contain the number of visits that could not take place if the programmers blocked the town no. i i i.

样例 #1
样例输入 #1
5 5
1 2
2 3
1 3
3 4
4 5
样例输出 #1
8
8
16
14
8
思路

魔改一下 tarjan 求割点的过程。
在这里插入图片描述

AC代码
#include<bits/stdc++.h>
using namespace std;
const int N=1000010;
int n,m,h[N],idx;
int dfn[N],low[N],siz[N],tot;
long long ans[N];
bool cut[N];
int e[N],ne[N];
inline void add(int u,int v){e[++idx]=v;ne[idx]=h[u];h[u]=idx;
}
void tarjan(int u){dfn[u]=low[u]=++tot;siz[u]=1;int flag=0,sum=0;for(int i=h[u];i;i=ne[i]){int v=e[i];if(!dfn[v]){tarjan(v);siz[u]+=siz[v];low[u]=min(low[u],low[v]);if(low[v]>=dfn[u]){ans[u]+=(long long)siz[v]*(n-siz[v]);sum+=siz[v];flag++;if(u!=1||flag>1) cut[u]=true;}}else low[u]=min(low[u],dfn[v]);}if(!cut[u]) ans[u]=2*(n-1);else ans[u]+=(long long)(n-sum-1)*(sum+1)+(n-1);
}
int main(){ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);cin>>n>>m;for(int i=1;i<=m;i++){int x,y;cin>>x>>y;add(x,y);add(y,x);}tarjan(1);for(int i=1;i<=n;i++)cout<<ans[i]<<endl;return 0;
}

【模板】割点(割顶)

题目背景

割点

题目描述

给出一个 n n n 个点, m m m 条边的无向图,求图的割点。

输入格式

第一行输入两个正整数 n , m n,m n,m

下面 m m m 行每行输入两个正整数 x , y x,y x,y 表示 x x x y y y 有一条边。

输出格式

第一行输出割点个数。

第二行按照节点编号从小到大输出节点,用空格隔开。

样例 #1
样例输入 #1
6 7
1 2
1 3
1 4
2 5
3 5
4 5
5 6
样例输出 #1
1 
5
提示

对于全部数据, 1 ≤ n ≤ 2 × 1 0 4 1\leq n \le 2\times 10^4 1n2×104 1 ≤ m ≤ 1 × 1 0 5 1\leq m \le 1 \times 10^5 1m1×105

点的编号均大于 0 0 0 小于等于 n n n

tarjan图不一定联通。

思路

个点就是去掉这个点之后,图中的强联通分量变多了,那么这个点就是一个割点
因为这样,假设割点左边有一个子图,右边也有一个子图,由于这个点是割点,那么左右一定是没有其他边联通的, 所以该点的联通的连v满足low[v]>=dfn[u],最后特判一下根

AC代码

#include<bits/stdc++.h>
using namespace std;
const int N =1e6+10;
vector<int> g[N<<1];
int n,m,ind[N],low[N],dfn[N],ans,s,ans1[N],tot,num,cut[N],vis[N],now,root;
void tarjan(int u){low[u]=dfn[u]=++now,vis[u]=1;for(int i=0;i<g[u].size();i++){int v=g[u][i];if(!dfn[v]){tarjan(v);if(u==root)	s++;else{low[u]=min(low[u],low[v]);if(low[v]>=dfn[u])	cut[u]=1;}}elselow[u]=min(low[u],dfn[v]);}
}
int main()
{ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);cin>>n>>m;for(int i=1,u,v;i<=m;i++){cin>>u>>v;g[u].push_back(v);g[v].push_back(u);}for(int i=1;i<=n;i++){s=0;if(dfn[i])	continue;root=i,now=0;tarjan(i);ind[i]=s;	}	for(int i=1;i<=n;i++)if(ind[i]>1)ans1[++tot]=i;for(int i=1;i<=n;i++){	if(ind[i]!=0)continue;if(cut[i]==1)ans1[++tot]=i;}sort(ans1+1,ans1+tot+1);cout<<tot<<endl;for(int i=1;i<=tot;i++)	cout<<ans1[i]<<" ";
}

这是我的第二十二篇文章,如有纰漏也请各位大佬指正
辛苦创作不易,还望看官点赞收藏打赏,后续还会更新新的内容。

http://www.ds6.com.cn/news/28871.html

相关文章:

  • 做赌博网站判刑b2b是什么意思
  • 百度收录不了网站中国十大it培训机构排名
  • seo网站关键词百度网盘pc端网页版
  • 网站跳转怎么做360冬镜seo
  • 小软件公司一年能挣多少钱seo是指搜索引擎营销
  • 做移动端活动页面参考网站百度客服电话24小时客服电话
  • 网站信任的体验如何做痘痘怎么去除效果好
  • 做网站借用网络图片不违法吧网站制作建设公司
  • wordpress dux主题首页排序百度如何优化
  • 惠州网站建设找惠州邦网站seo推广营销
  • 手机怎么做弹幕小视频网站百度手机网页版
  • 网页制作培训班厦门做网站seo推广公司
  • 企业管理网站开发论文seo运营培训
  • 如何做自已网站济南网站建设公司选济南网络
  • 做了个网站 怎么做seo中国足彩网竞彩推荐
  • 网站建设金硕网络seo的优点
  • 做私服网站需要些什么app推广策划方案
  • 玻璃钢格栅无锡网站建设武汉大学人民医院洪山院区
  • 怎样登录沈阳科技网站搜索引擎优化seo优惠
  • 网站由谁备案谷歌搜索引擎入口2021
  • 大石桥网站制作线上宣传渠道
  • 做网站购买虚拟主机送模板吗百度新闻首页头条
  • 怎么做套板网站百度快照推广一年要多少钱
  • 企业做网站的费用怎么入账六安seo
  • 做传销网站违法吗seo外包品牌
  • 抚州建设工程网站泉州百度首页优化
  • 学网页制作有什么用网站关键词优化案例
  • 为个人网站做微信服务号最近发生的热点新闻事件
  • 网站访问量asp怎样在百度上注册自己的店铺
  • 团队做网站的收获精准营销系统