当前位置: 首页 > news >正文

做汽车网站开题报告的意义360搜索引擎下载

做汽车网站开题报告的意义,360搜索引擎下载,百度广告联盟官网下载,一级A视网站 一级做爰片算法沉淀——动态规划之子数组、子串系列 01.最大子数组和02.环形子数组的最大和03.乘积最大子数组04.乘积为正数的最长子数组长度 01.最大子数组和 题目链接:https://leetcode.cn/problems/maximum-subarray/、 给你一个整数数组 nums ,请你找出一个具…

在这里插入图片描述

算法沉淀——动态规划之子数组、子串系列

  • 01.最大子数组和
  • 02.环形子数组的最大和
  • 03.乘积最大子数组
  • 04.乘积为正数的最长子数组长度

01.最大子数组和

题目链接:https://leetcode.cn/problems/maximum-subarray/、

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

**进阶:**如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

思路

  1. 状态表示:
    • 使用「经验 + 题目要求」定义线性动态规划的状态表示。
    • 选择以「某个位置为结尾」的方式,结合「题目要求」,定义状态表示:dp[i] 表示以 i 位置元素为结尾的「所有子数组」中和的最大和。
  2. 状态转移方程:
    • 将 dp[i] 的所有可能分为两种情况:子数组的长度为 1 或子数组的长度大于 1。
    • 如果子数组长度为 1,则 dp[i] = nums[i]。
    • 如果子数组长度大于 1,则 dp[i] 应该等于以 i-1 为结尾的「所有子数组」中和的最大值再加上 nums[i],即 dp[i-1] + nums[i]。
    • 转移方程为 dp[i] = max(nums[i], dp[i-1] + nums[i])。
  3. 初始化:
    • 在最前面加上一个「辅助结点」,用于初始化。辅助结点的值要保证后续填表是正确的,因此设 dp[0] = 0。
    • 辅助结点的存在需要注意下标的映射关系。
  4. 填表顺序:
    • 根据「状态转移方程」,填表顺序为「从左往右」。
  5. 返回值:
    • 状态表 dp 表示以 i 为结尾的所有子数组的最大值,但最大子数组和的结尾是不确定的。因此,返回整个 dp 表中的最大值。

代码

class Solution {
public:int maxSubArray(vector<int>& nums) {int n=nums.size();vector<int> dp(n+1);int ret=INT_MIN;for(int i=1;i<=n;i++){dp[i]=max(nums[i-1],dp[i-1]+nums[i-1]);ret=max(ret,dp[i]);}return ret;}
};

02.环形子数组的最大和

题目链接:https://leetcode.cn/problems/maximum-sum-circular-subarray/

给定一个长度为 n环形整数数组 nums ,返回 nums 的非空 子数组 的最大可能和

环形数组 意味着数组的末端将会与开头相连呈环状。形式上, nums[i] 的下一个元素是 nums[(i + 1) % n]nums[i] 的前一个元素是 nums[(i - 1 + n) % n]

子数组 最多只能包含固定缓冲区 nums 中的每个元素一次。形式上,对于子数组 nums[i], nums[i + 1], ..., nums[j] ,不存在 i <= k1, k2 <= j 其中 k1 % n == k2 % n

示例 1:

输入:nums = [1,-2,3,-2]
输出:3
解释:从子数组 [3] 得到最大和 3

示例 2:

输入:nums = [5,-3,5]
输出:10
解释:从子数组 [5,5] 得到最大和 5 + 5 = 10

示例 3:

输入:nums = [3,-2,2,-3]
输出:3
解释:从子数组 [3] 和 [3,-2,2] 都可以得到最大和 3

提示:

  • n == nums.length
  • 1 <= n <= 3 * 104
  • -3 * 104 <= nums[i] <= 3 * 104

思路

这个问题与「最大子数组和」的区别在于需要考虑数组首尾相连的情况。结果可能有两种情况:一是在数组的内部,包括整个数组;二是在数组首尾相连的一部分上。

  1. 对于第一种情况,按照「最大子数组和」的方法得到结果,记为 fmax。
  2. 对于第二种情况,分析得出,第二种情况的最大和应等于数组总和减去最小子数组和。其中,最小子数组和表示为 gmin。
  3. 两种情况下的最大值即为所求结果。然而,需要特殊处理数组内全部为负数的情况,因为直接比较两者的最大值可能会得到 0。这种情况下,实际结果应为数组内的最大值。
  4. 对于「最小子数组和」的求解过程与「最大子数组和」相同,使用 f 表示最大和,g 表示最小和。
  5. 返回值:先找到 f 表的最大值 fmax;找到 g 表的最小值 gmin;统计所有元素的和 sum;返回 sum == gmin ? fmax : max(fmax, sum - gmin)。

代码

class Solution {
public:int maxSubarraySumCircular(vector<int>& nums) {int n=nums.size();vector<int> f(n+1);vector<int> g(n+1);int fmax=INT_MIN,gmin=INT_MAX,sum=0;for(int i=1;i<=n;++i){int x=nums[i-1];sum+=x;f[i]=max(x,x+f[i-1]);fmax=max(fmax,f[i]);g[i]=min(x,x+g[i-1]);gmin=min(gmin,g[i]);}return sum==gmin ? fmax : max(fmax,sum-gmin);}
};

03.乘积最大子数组

题目链接:https://leetcode.cn/problems/maximum-product-subarray/

给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

测试用例的答案是一个 32-位 整数。

子数组 是数组的连续子序列。

示例 1:

输入: nums = [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。

示例 2:

输入: nums = [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。

提示:

  • 1 <= nums.length <= 2 * 104
  • -10 <= nums[i] <= 10
  • nums 的任何前缀或后缀的乘积都 保证 是一个 32-位 整数

思路

这道题类似于「最大子数组和」,但需要考虑乘积而非和。定义两个状态数组 f[i] 和 g[i] 分别表示以 i 为结尾的所有子数组的最大乘积和最小乘积。

  1. 状态表示:
    • f[i] 表示以 i 为结尾的所有子数组的最大乘积。
    • g[i] 表示以 i 为结尾的所有子数组的最小乘积。
  2. 状态转移方程:
    • 对于 f[i],需要考虑三种情况:子数组长度为 1,子数组长度大于 1 且 nums[i] > 0,子数组长度大于 1 且 nums[i] < 0。
    • 综上,f[i] = max(nums[i], max(nums[i] * f[i - 1], nums[i] * g[i - 1]))
    • 对于 g[i],同样考虑三种情况。
    • 综上,g[i] = min(nums[i], min(nums[i] * f[i - 1], nums[i] * g[i - 1]))
  3. 初始化:
    • 在最前面加上一个辅助结点,并设置 f[0] = g[0] = 1
  4. 填表顺序:
    • 从左往右,两个表一起填。
  5. 返回值:
    • 返回 f 表中的最大值。

代码

class Solution {
public:int maxProduct(vector<int>& nums) {int n=nums.size();vector<int> f(n+1);vector<int> g(n+1);f[0]=g[0]=1;int ret=INT_MIN;for(int i=1;i<=n;++i){int x=nums[i-1],y=f[i-1]*nums[i-1],z=g[i-1]*nums[i-1];f[i]=max(x,max(y,z));g[i]=min(x,min(y,z));ret=max(ret,f[i]);}return ret;}
};

04.乘积为正数的最长子数组长度

题目链接:https://leetcode.cn/problems/maximum-length-of-subarray-with-positive-product/

定一个整数数组nums,找到其中所有元素的乘积为正的子数组的最大长度。

数组的子数组是从该数组中取出的零个或多个值的连续序列。

返回具有正积的子数组的最大长度

示例1:

输入: nums = [1,-2,-3,4]
输出: 4
解释:数组 nums 的乘积已经为 24。

示例2:

输入: nums = [0,1,-2,-3,-4]
输出: 3
解释:具有正积的最长子数组是 [1,-2,-3],其积为 6。
请注意,我们不能在子数组中包含 0,因为这会使乘积为 0,而 0 不是正数。

示例3:

输入: nums = [-1,-2,-3,0,1]
输出: 2
解释:具有正积的最长子数组是 [-1,-2] 或 [-2,-3]。

限制条件:

  • 1 <= nums.length <= 105
  • -109 <= nums[i] <= 109

思路

1. 状态表达: 定义两个动态规划数组 fg,其中:

  • f[i] 表示以 i 为结尾的所有子数组中,乘积为正数的最长子数组长度。
  • g[i] 表示以 i 为结尾的所有子数组中,乘积为负数的最长子数组长度。

2. 状态转移方程: 对于 f[i],根据当前元素 nums[i] 的值,分三种情况讨论:

  • 如果 nums[i] = 0,说明当前子数组的乘积为零,所以 f[i] = 0

  • 如果 nums[i] > 0,说明当前子数组的乘积为正数,直接找到 f[i - 1] 的值并加一,即 f[i] = f[i - 1] + 1

  • 如果

    nums[i] < 0
    

    ,需要根据

    g[i - 1]
    

    的值来判断:

    • 如果 g[i - 1] 为零,表示以 i - 1 为结尾的最长负数子数组不存在,所以 f[i] = 0
    • 如果 g[i - 1] 不为零,表示以 i - 1 为结尾的最长负数子数组存在,此时 f[i] = g[i - 1] + 1

对于 g[i],也分三种情况讨论:

  • 如果 nums[i] = 0,说明当前子数组的乘积为零,所以 g[i] = 0

  • 如果 nums[i] < 0,说明当前子数组的乘积为负数,直接找到 f[i - 1] 的值并加一,即 g[i] = f[i - 1] + 1

  • 如果

    nums[i] > 0
    

    ,需要根据

    g[i - 1]
    

    的值来判断:

    • 如果 g[i - 1] 为零,表示以 i - 1 为结尾的最长负数子数组不存在,所以 g[i] = 0
    • 如果 g[i - 1] 不为零,表示以 i - 1 为结尾的最长负数子数组存在,此时 g[i] = g[i - 1] + 1

3. 初始化: 在数组最前面加上一个辅助结点,设置 f[0] = g[0] = 0

4. 填表顺序: 从左往右遍历数组,同时填充 fg 两个动态规划数组。

5. 返回值: 返回 f 数组中的最大值,即为最终结果。

代码

class Solution {
public:int getMaxLen(vector<int>& nums) {int n=nums.size();vector<int> f(n+1);vector<int> g(n+1);int ret=INT_MIN;for(int i=1;i<=n;++i){if(nums[i-1]>0){f[i]=f[i-1]+1;g[i]=g[i-1]==0?0:g[i-1]+1;}else if(nums[i-1]<0){f[i]=g[i-1]==0?0:g[i-1]+1;g[i]=f[i-1]+1;}ret=max(ret,f[i]);}return ret;}
};
http://www.ds6.com.cn/news/26565.html

相关文章:

  • 个人网站域名注册品牌策划是做什么的
  • 免费动态域名解析软件百度seo优化排名客服电话
  • 网站设立前置审批seo如何优化网站
  • 免费做全网解析电影网站赚钱搜狗网页版入口
  • 网站公司怎么做业务百度网络营销中心
  • 纯色涂料网站建设如何快速提升自己
  • 合肥网站建设ijwww怎么样建立自己的网站
  • 做网站费用 优帮云百家号seo
  • 大型网站制作哪家好拉人注册给佣金的app
  • seo外链的常见措施惠州seo外包
  • 网站开发中的文档网络广告策划案
  • 用jsp做的网站阿里妈妈推广网站
  • 专门做西装网站自己的网站
  • 电商资讯网站有哪些百度seo工具
  • 上海松江区做网站的公司百度关键词优化的意思
  • 建设网站需要什么技术外链发布网站
  • 企业怎么建设自己的网站首页seo排名优化软件有
  • 网站如何布局设计it培训机构靠谱吗
  • 网站开发合同预期如何建立自己的网站平台
  • 张北网站建设公司东莞排名优化团队
  • 手机端网站界面如何做成都网站建设企业
  • 网站建设费用是否资本化营销网站建设专家
  • 企业网站建设计什么科目武汉seo优化
  • 福州网站百度如何快速收录网站
  • wordpress 英文改中文网站页面关键词优化
  • 最好网站建设公司哪家好友情链接的获取途径有哪些
  • 自己电脑做网站 路由器制作网页链接
  • 网站建设中最基本的决策之一是网络营销的概念
  • 黄冈建设局网站唐山seo排名
  • 做视频网站用什么云盘好友情链接管理系统