当前位置: 首页 > news >正文

狗爹服务器做视频网站百度收录提交工具

狗爹服务器做视频网站,百度收录提交工具,用bmob做网站,缙云 网站建设Spatial Data Analysis(六):空间优化问题 使用pulp库解决空间优化问题: pulp是一个用于优化问题的Python库。它包含了多种优化算法和工具,可以用于线性规划、混合整数线性规划、非线性规划等问题。Pulp提供了一个简单…

Spatial Data Analysis(六):空间优化问题

使用pulp库解决空间优化问题:

pulp是一个用于优化问题的Python库。它包含了多种优化算法和工具,可以用于线性规划、混合整数线性规划、非线性规划等问题。Pulp提供了一个简单的方式来定义优化问题,包括变量、约束和目标函数,并且可以使用多种求解器进行求解。Pulp也提供了可视化工具来展示优化问题的结果。Pulp是一个开源项目,可以在GitHub上获取它的源代码。

空间优化(一):p-中值问题

这个问题需要p设施的位置,同时最小化服务所有需求的总加权距离。
每个节点都有一个关联的权重,表示该节点的需求量。

目标函数: 最小化所有设施和需求节点的需求加权总和。

决策变量: 将设施放置在何处以及哪个设施位置为哪些需求节点提供服务

限制:

  • 每个节点由 1 个设施提供服务
  • 仅当某个位置存在设施时,节点才可以由该设施提供服务。
  • 我们必须放置p设施
  • 每个节点要么是一个设施,要么不是。
pip install -q pulp
from pulp import *
import numpy as np
import geopandas as gp
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
#read a sample shapefile
georgia_shp = gp.read_file("https://raw.githubusercontent.com/Ziqi-Li/GEO4162C/main/data/georgia/G_utm.shp")
georgia_shp.shape
(172, 18)

创建一个需求和一个设施变量,表示每个需求和设施的索引。
需求节点:所有县
facility:设施将建在一些选定的县之上

#create a demand and a facilities variable, indicating the indices of each demand and facility.
#demand node: all counties
#facility: Facilities will be built on top of some chosen countiesdemand = np.arange(0,172,1)
facilities = np.arange(0,172,1)

计算距离矩阵d_ij(n×n)

#Calculate a distance matrix d_ij (n by n)
coords = list(zip(georgia_shp.centroid.x,georgia_shp.centroid.y))d = cdist(coords,coords)

每个县(hi)的需求是总人口

#the demand for each county (h_i) is the total populatoion
h = georgia_shp.TotPop90.values

声明设施变量;生成的变量名称为:X_1,X_2,…

# declare facilities variables;the resulting variable names are: X_1,X_2,...
X = LpVariable.dicts('X_%s',(facilities),cat='Binary')# declare demand-facility pair variables; the resulting variable names are Y_0_1, Y_0_2,...
Y = LpVariable.dicts('Y_%s_%s', (demand,facilities),cat='Binary')

要放置的设施数量

#Number of facilities to place
p = 3 #change this and re-run the code.#Create a new problem
prob = LpProblem('P_Median', LpMinimize)

目标函数:最小化所有设施和需求节点的加权需求距离总和
(h_i: i 处的需求;d_ij: i 和 j 之间的距离)
“for”循环用于迭代序列

# Objective function: Minimizing weighted demand-distance  summed over all facilities and demand nodes
# (h_i: demand at i; d_ij: distance between i and j)
# A "for" loop is used for iterating over a sequenceprob += sum(sum(h[i] * d[i][j] * Y[i][j] for j in facilities) for i in demand)

这个约束表明我们必须精确放置 p 个设施

# This constraint indicates we must place exactly p facilitiesprob += sum([X[j] for j in facilities]) == p

这一约束意味着需求节点 i 只能由一个设施提供服务

# This constraint implies that a demand node i can only be serviced by one facilityfor i in demand:prob += sum(Y[i][j] for j in facilities) == 1

这个约束意味着需求节点 i
仅当 j 处有设施时才能由 j 处的设施提供服务
它隐式地消除了 X[j] = 0 但 Y[i][j] = 1 时的情况
(节点 i 由 j 提供服务,但 j 处没有设施)

# This constraint implies that that demand node i
# can be serviced by a facility at j only if there is a facility at j
# It implicitly removes situation when X[j] = 0 but Y[i][j] = 1
# (node i is served by j but there is no facility at j)for i in demand:for j in facilities:prob +=  Y[i][j] <= X[j]
%%time# Solve the above problem
prob.solve()print("Status:", LpStatus[prob.status])
Status: Optimal
CPU times: user 1.35 s, sys: 64 ms, total: 1.42 s
Wall time: 11.5 s
# The minimized total demand-distance. The unit is person * meter (total distance travelled)
print("Objective: ",value(prob.objective))
Objective:  469538765110.4489
# Print the facility node.
rslt=[]
for v in prob.variables():subV = v.name.split('_')if subV[0] == "X" and v.varValue == 1:rslt.append(int(subV[1]))print('Facility Node: ', subV[1])
Facility Node:  126
Facility Node:  30
Facility Node:  82
# Get the geomerty of the facility nodes.
fac_loc = georgia_shp.iloc[rslt,:]
fac_loc
AREAPERIMETERG_UTM_G_UTM_IDAREANAMELatitudeLongitudTotPop90PctRuralPctBachPctEldPctFBPctPovPctBlackXYAreaKeygeometry
1267.315030e+08117190.0130128GA, Crisp County31.92540-83.771592001148.410.012.470.3029.040.66805648.4353710313081POLYGON ((787012.250 3547615.750, 820243.312 3...
301.385270e+09274218.03231GA, Fulton County33.78940-84.467166489514.231.69.634.1318.449.92733728.4373324813121POLYGON ((752606.688 3785970.500, 752835.062 3...
829.179670e+08121744.08484GA, Jenkins County32.78866-81.96042824753.87.713.100.2127.841.51970465.7364026313165POLYGON ((989566.750 3653155.750, 981378.062 3...
#Plot the faclities (stars) on top of the demand map.
fig, ax = plt.subplots(figsize=(5,5))georgia_shp.centroid.plot(ax=ax,markersize=georgia_shp.TotPop90/1000)#markersize is proportional to the population
fac_loc.centroid.plot(ax=ax,color="red",markersize=300,marker="*")

在这里插入图片描述

空间优化(二):集合覆盖问题

在此模型中,设施可以为距设施给定覆盖距离 Dc 内的所有需求节点提供服务。 问题在于放置最少数量的设施,以确保所有需求节点都能得到服务。 我们假设设施没有容量限制。

pip install -q pulp
from pulp import *
import numpy as np
import geopandas as gp
from scipy.spatial.distance import cdistimport matplotlib.pyplot as plt
#read a sample shapefile
georgia_shp = gp.read_file("https://raw.githubusercontent.com/Ziqi-Li/GEO4162C/main/data/georgia/G_utm.shp")
georgia_shp.shape
(172, 18)

创建一个需求和一个设施变量,表示每个需求和设施的索引。
需求节点:所有县
facility:我们可以在一些县建造设施

#create a demand and a facilities variable, indicating the indices of each demand and facility.
#demand node: all counties
#facility: we could build facilities in some countiesdemand = np.arange(0,172,1)
facilities = np.arange(0,172,1)

计算距离矩阵d_ij(n×n)

#Calculate a distance matrix d_ij (n by n)
coords = list(zip(georgia_shp.centroid.x,georgia_shp.centroid.y))
d = cdist(coords,coords)

阈值覆盖距离

# Threshold coverage distance
Dc = 100000 #100km coverage, change this and re run the code.

创建一个变量,指示节点 i 是否可以被设施 j 覆盖。

#Creata a variable (alpha in the lecture slide pg.28), indicating  whether a node i can be covered by facility j.
a = np.zeros(d.shape)
a[d <= Dc] = 1
a[d > Dc] = 0

声明设施变量 Xj

# declare facilities variables Xj
X = LpVariable.dicts('X_%s',(facilities),cat='Binary')

创建一个最小化问题

#Create an minimization problem
prob = LpProblem('Set_Covering', LpMinimize)

目标函数:我们要最小化放置设施的数量

# Objective function: we want to minimize the number of placed facilities
prob += sum([X[j] for j in facilities])

该约束意味着每个需求节点 i 需要至少由设施服务

# This constraint implies every demand node i needs to be served by at least facility
for i in demand:prob += sum(a[i][j]*X[j] for j in facilities) >= 1
%%time
# Solve the above problem
prob.solve()print("Status:", LpStatus[prob.status])
Status: Optimal
CPU times: user 22.5 ms, sys: 1.05 ms, total: 23.6 ms
Wall time: 66.4 ms
# The minimal number of facilities with the defiened coverage.
print("Objective: ",value(prob.objective))
Objective:  8.0
# Print the facility nodes.
rslt = []
for v in prob.variables():subV = v.name.split('_')if subV[0] == "X" and v.varValue == 1:rslt.append(int(subV[1]))print('Facility Node: ', subV[1])
Facility Node:  102
Facility Node:  120
Facility Node:  145
Facility Node:  150
Facility Node:  30
Facility Node:  38
Facility Node:  9
Facility Node:  97
# Get the geomerty of the facility nodes.
fac_loc = georgia_shp.iloc[rslt,:]
#Plot the faclities (stars) on top of the demand map.
fig, ax = plt.subplots(figsize=(5,5))georgia_shp.centroid.plot(ax=ax)
fac_loc.centroid.plot(ax=ax,color="red",markersize=300,marker="*")
<Axes: >


在这里插入图片描述

http://www.ds6.com.cn/news/25311.html

相关文章:

  • 给企业做网站的公司有哪些上海公布最新情况
  • 怎么注册英文网站域名北京软件开发公司
  • 怎么在360网站做词条百度学术官网
  • 做毕业设计网站的步骤seo推广骗局
  • 合肥 网站建设公司哪家好更先进的seo服务
  • 武汉中小企业网站制作公司适合网络营销的产品
  • 建立一个网站要什么条件seo排名工具外包
  • 州网站建设要找嘉艺网络百度推广后台登录
  • icp网站备案查询seo 推广怎么做
  • 小型网站建设源码网络推广网站
  • app营销网站模板危机公关处理方案
  • 网站的底部导航怎么做站长之家产品介绍
  • vue反向代理天地图地址360seo
  • 视频分享网站建设静态网页设计与制作
  • 阿里巴巴建设网站首页推广计划怎么做推广是什么
  • 太原网络公司网站seo在线优化工具
  • 国外推广国内网站网站推广排名
  • 卡通网站建设品牌营销与推广
  • 国家企业信用信息公示网官方电脑优化用什么软件好
  • 网站建设必须配置站长统计app软件下载
  • 联想网站建设预算报告书商旅平台app下载
  • 网站制作资源百度人工客服电话
  • 学校网站建设工作内容免费推广的途径与原因
  • 门户手机网站源码查询网站相关网址
  • 金融直播间网站建设中国最好的营销策划公司
  • 深圳建设网站费用明细阿里云域名查询
  • 网站建设与动态网页设计常宁seo外包
  • 做韩国网站有哪些东西吗系统优化是什么意思
  • 做像58同城样的网站百家号权重查询站长工具
  • 做网站需要的资料营销软文300字范文