当前位置: 首页 > news >正文

建设网站思路今日热点新闻事件及评论

建设网站思路,今日热点新闻事件及评论,做电商网站电商公司,网站平台本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。 零、预修 0.1 LU分解 设,若对于,均有,则存在下三角矩阵和上三角矩阵,使得。 设,若对于,均有,则存在唯一的下三…

本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。

零、预修

0.1 LU分解

\boldsymbol{A}\in \mathbb{R}^{n\times n},若对于k\in \left [ 1,n-1 \right ],均有\left | \boldsymbol{A}\left ( 1:k,1:k \right ) \right |\neq 0,则存在下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n}和上三角矩阵\boldsymbol{U} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{U}

\boldsymbol{A}\in \mathbb{R}^{n\times n},若对于k\in \left [ 1,n \right ],均有\left | \boldsymbol{A}\left ( 1:k,1:k \right ) \right |\neq 0,则存在唯一的下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n}和上三角矩阵\boldsymbol{U} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{U},并且\left |A \right |=U\left ( 1,1 \right )U\left ( 2,2 \right )\cdots U\left ( n,n \right )

0.2 Cholesky分解

\boldsymbol{A}\in \mathbb{R}^{n\times n}对称正定,则存在一个对角元均为正数的下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{L}^{T}

一、 总论:迭代法求解线性方程组的一般思路

对于非奇异矩阵\boldsymbol{A}\in \mathbb{R}^{n\times n}\boldsymbol{b}\in \mathbb{R}^{n},使用迭代法求解线性方程组\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}过程中,一般需要以下流程进行:

  1. 给定一个初始向量\boldsymbol{x}_{0}
  2. 构造一个递推公式\boldsymbol{x}_{k+1}=\boldsymbol{f}\left ( \boldsymbol{x}_{k},\boldsymbol{A},\mathbf{b} \right )
  3. 不断递推\boldsymbol{x}_{k+1},使其近似收敛于\boldsymbol{x}_{*}

下表列出了若干迭代算法的迭代公式。

方法\boldsymbol{A}迭代公式备注
Jacobi迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{x}_{k}=\boldsymbol{D}^{-1}\left ( \boldsymbol{L}+\boldsymbol{U} \right ) \boldsymbol{x}_{k-1}+\boldsymbol{D}^{-1}\boldsymbol{b}
Gausss-Seidel迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{x}_{k}=\left ( \boldsymbol{D}-\boldsymbol{L }\right )^{-1}\boldsymbol{U}\boldsymbol{x}_{k-1}+\left ( \boldsymbol{D}-\boldsymbol{L} \right )^{-1}b
SOR迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{L}_{\omega }=\left ( \boldsymbol{D}-\omega \boldsymbol{L}\right )^{-1} \left ( \left ( 1-\omega \right )\boldsymbol{D}+\omega \boldsymbol{U} \right )\\ \boldsymbol{x}_{k+1}= \boldsymbol{L}_{\omega }\boldsymbol{x}_{k}+\omega \left ( \boldsymbol{D}-\omega \boldsymbol{L} \right )^{-1}\boldsymbol{b}
Steepest Descent对称正定\boldsymbol{r}_{k}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}\\ \boldsymbol{p}_{k}=\boldsymbol{r}_{k}\\ \alpha_{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{p}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha _{k}\boldsymbol{p}_{k}
Conjugate Gradient对称正定

k=1

     \boldsymbol{r}_{k}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}\\ \boldsymbol{p}_{k}=\boldsymbol{r}_{k}\\ \alpha_{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{p}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha _{k}\boldsymbol{p}_{k}

k>1

    \alpha _{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha \boldsymbol{p}_{k} \\ \boldsymbol{r}_{k+1}=\boldsymbol{r}_{k}-\alpha _{k}\boldsymbol{A}\boldsymbol{p}_{k} \\ \beta _{k}=\frac{\boldsymbol{r}_{k+1}^{T}\boldsymbol{r}_{k+1}}{\boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k}}\\ \boldsymbol{p}_{k+1}=\boldsymbol{r}_{k+1}+\beta _{k}\boldsymbol{p}_{k}

二、Projection Method

投影法将线性方程组求解问题转换成了最优值求解问题,是求解线性方程组的一大类方法。

在投影法中,令\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x},构造列满秩矩阵\mathcal{K}\in \mathbb{R}^{n\times m}\mathcal{L}\in \mathbb{R}^{n\times m},寻找\boldsymbol{\tilde{x}}\in\mathcal{K},满足Petrov-Galerkin条件,即\forall \boldsymbol{y}\in \mathcal{L},均有\mathcal{L}^{T}\left ( \boldsymbol{b}-\boldsymbol{A}\boldsymbol{\tilde{x}} \right )=\boldsymbol{0}\mathcal{K}称为搜索空间,\mathcal{L}称为约束空间。若\mathcal{L}=\mathcal{K}时,称为正投影算法,否则称为斜投影算法

三、Krylov Subspace Method

Krylov子空间法本质上也是一种投影法,其核心思想是在更小维度的Krylov子空间内寻找满足精度要求的近似解。即令\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}_{0},构造了mKrylov子空间\mathcal{K}\left ( \boldsymbol{A},\boldsymbol{r}_{0} \right )=span\left ( \boldsymbol{r}_{0} , \boldsymbol{A}\boldsymbol{r}_{0}, \boldsymbol{A}^{2} \boldsymbol{r}_{0},\cdots ,\boldsymbol{A}^{m-1}\boldsymbol{r}_{0} \right ),使得\mathcal{L}^{T}\left (\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x} \right )=\boldsymbol{0}

选择不同的\mathcal{L},就对应不同的Krylov子空间法

3.1 Steepest Descent Method

3.2 Hestenes-Stiefel Conjugate Gradient Method

3.3 Preconditioned Conjugate Gradient

参考书籍

Golub G H , Loan C F V .Matrix Computations.Johns Hopkins University Press,1996.

Ford W .Numerical Linear Algebra with Applications using MATLAB. 2014.

徐树方. 数值线性代数(第二版).  北京大学出版社, 2010.

参考文献

Hestenes M R , Stiefel E L .Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards (United States), 1952. 

http://www.ds6.com.cn/news/2446.html

相关文章:

  • 甘肃住房建设厅网站关键路径
  • 怎样宣传网站湖口网站建设
  • 优化网站用软件好吗seo推广知识
  • 西樵营销网站制作免费的行情网站app
  • 怎么用wordpress做企业网站搜索引擎推广的基本方法有
  • 做网店网站做外贸有哪些网站平台
  • 怎样做动漫照片下载网站seo解释
  • 2008建立的php网站慢百度公司招聘岗位
  • 怎么选择邯郸做网站友情链接的作用有哪些
  • 品牌建设意识薄弱哪里可以学seo课程
  • 做网站用框架济南市最新消息
  • 做外贸网站怎么做网络营销图片
  • 怎样用网络挣钱seo策略什么意思
  • c 做彩票网站山东自助seo建站
  • 如何介绍设计的网站模板下载地址百度软文
  • 一个门户网站多少钱网络营销和传统营销有什么区别
  • 做网站湖州百度高级搜索引擎入口
  • 泉州哪个公司网站做的好网络营销策划包括哪些内容
  • 门户网站建设和推广网络营销的推广方法有哪些
  • 网站开发计入管理费用哪个明细站长工具seo综合查询推广
  • 网站制作技术人员营销策划方案ppt
  • 衡阳网站建设步骤网店推广的方式
  • 网站后台都需要什么软件做四大营销策略
  • 免费推广企业网站百度云搜索资源入口
  • 模板建站seo优化百度网盘登录入口官网
  • 网站筑云做关键词教育机构退费纠纷找谁
  • 德州网络公司网站代写文章兼职
  • wap网站开发教程java培训学费多少钱
  • 网上哪里可以定制衣服seo成功的案例和分析
  • 山西响应式网站建设公司seo培训网